Integrate √tan^-xdx
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Ankit Kumar 4 years, 4 months ago
- 1 answers
Related Questions
Posted by Neemisha Gusain 4 months, 3 weeks ago
- 0 answers
Posted by Tumngam Karbak 4 months, 3 weeks ago
- 0 answers
Posted by Sneha Pandey 4 months, 4 weeks ago
- 0 answers
Posted by Xxxxxx Xx 4 months ago
- 3 answers
Posted by Suchitra Jain 4 months, 1 week ago
- 0 answers
Posted by Xxxxxx Xx 4 months ago
- 0 answers
Posted by Charu Baid 4 months ago
- 0 answers
Posted by Sanjay Kumar 4 months, 2 weeks ago
- 0 answers
Posted by Karan Kumar Mohanta 4 months, 1 week ago
- 0 answers
Posted by Sanjna Gupta 4 months ago
- 4 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Gaurav Seth 4 years, 4 months ago
∫√<font face="Verdana"><font style="margin: 0px; padding: 0px; box-sizing: inherit; color: rgba(0, 0, 0, 0.54); font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-style: initial; text-decoration-color: initial;"><font size="3"><font style="margin: 0px; padding: 0px; box-sizing: inherit;">(tan x) dx
Let tan x = t2
⇒ sec2 x dx = 2t dt
⇒ dx = [2t / (1 + t4)]dt
⇒ Integral ∫ 2t2 / (1 + t4) dt
⇒ ∫[(t2 + 1) + (t2 - 1)] / (1 + t4) dt
⇒ ∫(t2 + 1) / (1 + t4) dt + ∫(t2 - 1) / (1 + t4) dt
⇒ ∫(1 + 1/t2 ) / (t2 + 1/t2 ) dt + ∫(1 - 1/t2 ) / (t2 + 1/t2 ) dt
⇒ ∫(1 + 1/t2 )dt / [(t - 1/t)2 + 2] + ∫(1 - 1/t2)dt / [(t + 1/t)2 -2]
Let t - 1/t = u for the first integral ⇒ (1 + 1/t2 )dt = du
and t + 1/t = v for the 2nd integral ⇒ (1 - 1/t2 )dt = dv
Integral
= ∫du/(u2 + 2) + ∫dv/(v2 - 2)
= (1/√2) tan-1 (u/√2) + (1/2√2) log(v -√2)/(v + √2)l + c
= (1/√2) tan-1 [(t2 - 1)/t√2] + (1/2√2) log (t2 + 1 - t√2) / t2 + 1 + t√2) + c
= (1/√2) tan-1 [(tanx - 1)/(√2tan x)] + (1/2√2) log [tanx + 1 - √(2tan x)] / [tan x + 1 + √(2tan x)] + c</font></font></font></font>
0Thank You