No products in the cart.

Integrate √tan^-xdx

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Integrate √tan^-xdx
  • 1 answers

Gaurav Seth 4 years, 4 months ago

∫√<font face="Verdana"><font style="margin: 0px; padding: 0px; box-sizing: inherit; color: rgba(0, 0, 0, 0.54); font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(255, 255, 255); text-decoration-style: initial; text-decoration-color: initial;"><font size="3"><font style="margin: 0px; padding: 0px; box-sizing: inherit;">(tan x) dx

Let tan x = t2

⇒ sec2 x dx = 2t dt

⇒ dx = [2t / (1 + t4)]dt

⇒ Integral  ∫ 2t2 / (1 + t4) dt

⇒ ∫[(t2 + 1) + (t2 - 1)] / (1 + t4) dt

⇒ ∫(t2 + 1) / (1 + t4) dt + ∫(t2 - 1) / (1 + t4) dt

⇒ ∫(1 + 1/t2 ) / (t2 + 1/t2 ) dt + ∫(1 - 1/t2 ) / (t2 + 1/t2 ) dt

⇒ ∫(1 + 1/t2 )dt / [(t - 1/t)2 + 2] + ∫(1 - 1/t2)dt / [(t + 1/t)2 -2]

Let t - 1/t = u for the first integral ⇒ (1 + 1/t2 )dt = du

and t + 1/t = v for the 2nd integral ⇒ (1 - 1/t2 )dt = dv

Integral
= ∫du/(u2 + 2) + ∫dv/(v2 - 2)

= (1/√2) tan-1 (u/√2) + (1/2√2) log(v -√2)/(v + √2)l + c

= (1/√2) tan-1 [(t2 - 1)/t√2] + (1/2√2) log (t2 + 1 - t√2) / t2 + 1 + t√2) + c

= (1/√2) tan-1 [(tanx - 1)/(√2tan x)] + (1/2√2) log [tanx + 1 - √(2tan x)] / [tan x + 1 + √(2tan x)] + c</font></font></font></font>

http://mycbseguide.com/examin8/

Related Questions

Three friends Ravi Raju
  • 0 answers
Y=sin√ax^2+√bx+√c
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App