What are the dimensions of a&b …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Princess Aslam 8 years, 1 month ago
- 1 answers
Related Questions
Posted by Nekita Baraily 1 year, 5 months ago
- 2 answers
Posted by Mohammed Javith 1 year, 5 months ago
- 0 answers
Posted by M D 1 year, 4 months ago
- 1 answers
Posted by Pankaj Tripathi 1 year, 5 months ago
- 1 answers
Posted by Mansi Class 9Th 1 year, 5 months ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Kritika Trehan 8 years, 1 month ago
{tex}\begin{array}{l}F\;=\;a+\;bx\\Since\;a\;is\;connected\;by\;addition\;symbol\;so\;a\;has\;dimension\;same\;as\;F\\\lbrack F\rbrack=\;\lbrack a\rbrack\;=\;\lbrack MLT^{-2}\rbrack\\let\;\lbrack b\rbrack\;=\;\lbrack M^xL^yT^z\rbrack\\Again\;bx\;has\;dimension\;of\;F\\\lbrack F\rbrack\;=\;\lbrack b\rbrack\lbrack x\rbrack\\=\;>\;\lbrack MLT^{-2}\rbrack\;=\;\lbrack M^xL^yT^z\rbrack\lbrack L\rbrack\\=>\;\lbrack MLT^{-2}\rbrack\;=\;\lbrack M^xL^{y+1}T^z\rbrack\\comparing\;the\;powers\;of\;M,L\;and\;T\\x=1\\y+1=1\\=>\;y=0\\z=-2\\so\;\lbrack b\rbrack\;=\;\lbrack M^xL^yT^z\rbrack=\;\lbrack M^1L^0T^{-2}\rbrack\;\\\lbrack b\rbrack=\;\lbrack M^1T^2\rbrack\end{array}{/tex}
1Thank You