Factorise :x power4+4
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Prince Raj 4 years, 7 months ago
- 1 answers
Related Questions
Posted by Alvin Thomas 3 months ago
- 0 answers
Posted by Savitha Savitha 3 months ago
- 0 answers
Posted by T Prudhvi 1 week, 2 days ago
- 0 answers
Posted by Akhilesh Patidar 3 months ago
- 0 answers
Posted by Gnani Yogi 3 months ago
- 0 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Yogita Ingle 4 years, 7 months ago
{tex}Given \: x^{4}+4\\=\big(x^{2}\big)^{2}+2^{2}{/tex}
{tex}We \: know \: that ,\\\boxed {a^{2}+b^{2}=(a+b)^{2}-2ab}{/tex}
Here, {tex}\\a = x^{2},\:b = 2{/tex}
{tex}=\left(x^{2}+2\right)^{2}-2\times x^{2}\times 2{/tex}
{tex}=\left(x^{2}+2\right)^{2}-4\times x^{2} {/tex}
{tex}=\left(x^{2}+2\right)^{2}-(2x)^{2}{/tex}
{tex}We \: know \: that ,\\\boxed { a^{2}-b^{2}=(a+b)(a-b)}{/tex}
{tex}=(x^{2}+2+2x)(x^{2}+2-2x){/tex}
{tex}=(x^{2}+2x+2)(x^{2}-2x+2){/tex}
Therefore,.
{tex}x^{4}+4=(x^{2}+2x+2)(x^{2}-2x+2){/tex}
1Thank You