By cross multiplication method solve bx/a+ay/b=a2b2 …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Aditya Chhikara 6 years, 5 months ago
- 1 answers
Related Questions
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Kanika . 4 weeks, 1 day ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 1 answers
Posted by Hari Anand 6 months ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
The given pair of equations are:
{tex}\frac{b}{a}x + \frac{a}{b}y = {a^2} + {b^2} {/tex}
So, {tex}\frac{b}{a}x + \frac{a}{b}y -[ {a^2} + {b^2} ] = 0{/tex} ...................(i)
And x + y = 2ab
x + y - 2ab = 0 ....................(ii)
Here,
{tex}{a_1} = \frac{b}{a},{b_1} = \frac{a}{b}{/tex}, c1 = -(a2 + b2)
a2 = 1, b2 = 1, c2 = -(2ab)
By cross-multiplication method
{tex}\begin{array}{l}\;\frac x{{\displaystyle\frac ab}\times-(2ab)\;-1\lbrack-(a^2\;+\;b^2)\rbrack}=\;\frac y{-(a^2\;+\;b^2)\;-{\displaystyle\frac ba}\lbrack\;-(2ab)\rbrack}=\;\frac1{{\displaystyle\frac ba}-{\displaystyle\frac ab}}\\\frac x{\displaystyle\frac{-2a^2b}b\;\;+(a^2\;+\;b^2)}=\;\frac y{-(a^2\;+\;b^2)\;+{\displaystyle\frac{2ab^2}a}}=\;\frac1{\displaystyle\frac{b^2\;-\;a^2}{ab}\;}\\\end{array}{/tex}
{tex} \frac{x}{{{\frac ba - \frac ab} }} = \frac{{ - y}}{{ - {b^2} + {a^2}}} = \frac{1}{{\frac{{{b^2} - {a^2}}}{{ab}}}} {/tex}
{tex} \frac{x}{{{b^2} - {a^2}}} = \frac{{ - y}}{{ - {b^2} + {a^2}}} = \frac{1}{{\frac{{{b^2} - {a^2}}}{{ab}}}} {/tex}
{tex} \frac{x}{{{b^2} - {a^2}}} = \frac{1}{{\frac{{{b^2} - {a^2}}}{{ab}}}} {/tex}
{tex}⇒ x = ab{/tex}
And, {tex}\frac{{ - y}}{{ - {b^2} + {a^2}}} = \frac{1}{{\frac{{{b^2} - {a^2}}}{{ab}}}} {/tex}
{tex}⇒ y = ab{/tex}
The solutions of the given pair of equations is x= ab and y = ab .
0Thank You