No products in the cart.

Using factor theorem, show that a-b, …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Using factor theorem, show that a-b, b-c, c-a are the factors of a(b2-c2) +b(c2-a2) +c(a2-b2).

  • 1 answers

Rashmi Bajpayee 8 years, 4 months ago

If a - b is a factor of given expression, then a - b = 0 => a = b

Putting a = b, in the given expression, we get

b(b<font size="2">2</font>-c<font size="2">2</font>) +b(c<font size="2">2</font>- b<font size="2">2</font>) +c(b<font size="2">2</font>- b<font size="2">2</font>)

= b3 - bc<font size="2">2</font> + bc<font size="2">2</font>  - b<font size="2">3</font> + c(0)

= 0

Therefore, (a - b) is a factor of given expression.

Again if (b - c) is a factor of given expression, then

Putting b - c = 0 => b = c in the given expression, we get

a(c<font size="2">2 </font>- c<font size="2">2</font>) +c(c<font size="2">2 </font>- a<font size="2">2</font>) + c(a<font size="2">2 </font>- c<font size="2">2</font>)

= a(0) + c3 - ca2 + ca2 - c3 

= 0

Therefore, (b - c) is a factor of given expression.

Again if (c - a) is a factor of given expression, then

Putting c - a = 0 => c = a in the given expression, we get

a(b<font size="2">2 </font>- a<font size="2">2</font>) + b(a<font size="2">2 </font>- a<font size="2">2</font>) + a(a<font size="2">2 </font>- b<font size="2">2</font>)

= ab2 - a<font size="2">3</font> + b(0) + a3 - ab2

= 0

Therefore, (c - a) is a factor of given expression

https://examin8.com Test

Related Questions

Square of 169
  • 1 answers
Ch 1 ke questions
  • 1 answers
2nC2:nC3=33:10
  • 0 answers
(3+i)x + (1-2i) y +7i =0
  • 1 answers
Find the product. (4x²) (–5³)
  • 0 answers
Express the complex number i-39
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App