No products in the cart.

State and prove bernouli's theorem

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

State and prove bernouli's theorem
  • 1 answers

Yogita Ingle 5 years, 8 months ago

Bernoulli’s Principle

  • For a streamline fluid flow, the sum of the pressure (P), the kinetic energy per unit volume (ρv2/2) and the potential energy per unit volume (ρgh) remain constant.
  • Mathematically:- P+ ρv2/2 + ρgh = constant
    • where P= pressure ,
    • E./ Volume=1/2mv2/V = 1/2v2(m/V) = 1/2ρv2
    • E./Volume = mgh/V = (m/V)gh = ρgh

Derive: Bernoulli’s equation

Assumptions:

  1. Fluid flow through a pipe of varying width.
  2. Pipe is located at changing heights.
  3. Fluid is incompressible.
  4. Flow is laminar.
  5. No energy is lost due to friction:applicable only to non-viscous fluids.
  • Mathematically: -
  • Consider the fluid initially lying between B and D. In an infinitesimal timeinterval Δt, this fluid would have moved.
    • Suppose v1= speed at B and v2= speedat D, initial distance moved by fluid from to C=v1Δt.
    • In the same interval Δtfluid distance moved by D to E = v2Δt.
    • P1= Pressureat A1, P2=Pressure at A2.
    • Work done on the fluid atleft end (BC) W1 = P1A1(v1Δt).
    • Work done by the fluid at the other end (DE)W2 = P2A2(v2Δt)
  • Net work done on the fluid is W1 – W2 = (P1A1v1Δt− P2A2v2Δt)
  • By the Equation of continuity Av=constant.
    • P1A1 v1Δt - P2A2v2Δt where A1v1Δt =P1ΔV and A2v2Δt = P2ΔV.
  • Therefore Work done = (P1− P2) ΔVequation (a)
    • Part of this work goes in changing Kinetic energy, ΔK = (½)m (v22 – v12) and part in gravitational potential energy,ΔU =mg (h2 − h1).
  • The total change in energy ΔE= ΔK +ΔU = (½) m (v22 – v12) + mg (h2 − h1). (i)
  • Density of the fluid ρ =m/V or m=ρV
  • Therefore in small interval of time Δt, small change in mass Δm
    • Δm=ρΔV (ii)
  • Putting the value from equation (ii) to (i)
  • ΔE = 1/2 ρΔV (v22 – v12) + ρgΔV (h2 − h1)  equation(b)
  • By using work-energy theorem: W = ΔE
    • From (a) and (b)
    • (P1-P2) ΔV =(1/2) ρΔV (v22 – v12) + ρgΔV (h2 − h1)
    • P1-P2 = 1/2ρv22 - 1/2ρv12+ρgh2 -ρgh1(By cancelling ΔV from both the sides).
  • After rearranging we get,P1 + (1/2) ρ v12 + ρg h1 = (1/2) ρ v22 + ρg h2
  • P+(1/2) ρv2+ρg h = constant.
  • This is the Bernoulli’s equation.
http://mycbseguide.com/examin8/

Related Questions

Ch 1 question no. 14
  • 0 answers
√kq,qpower2 R2
  • 0 answers
1dyne convert to S.I unit
  • 1 answers
Project report
  • 0 answers
2d+2d =
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App