If SECa =X+1/4x, prove that SECa+ …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Mayank Mishra 8 years, 4 months ago
- 1 answers
Related Questions
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Kanika . 4 weeks, 1 day ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 1 week ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Rashmi Bajpayee 8 years, 4 months ago
Given: {tex}\sec {\rm{A}} = x + {1 \over {4x}}{/tex}
Then, {tex}\tan {\rm{A}} = \sqrt {{{\sec }^2}{\rm{A}} - 1} {/tex}
=> {tex}\tan {\rm{A}} = \sqrt {{x^2} + {1 \over 2} + {1 \over {16{x^2}}} - 1} {/tex}
=> {tex}\tan {\rm{A}} = \sqrt {{{16{x^4} + 8{x^2} + 1 - 16{x^2}} \over {16{x^2}}}} {/tex}
=> {tex}\tan {\rm{A}} = \sqrt {{{16{x^4} - 8{x^2} + 1} \over {16{x^2}}}} {/tex}
=> {tex}\tan {\rm{A}} = \sqrt {{x^2} - {1 \over 2} + {1 \over {16{x^2}}}} {/tex}
=> {tex}\tan {\rm{A}} = \sqrt {{{\left( {x - {1 \over {4x}}} \right)}^2}} {/tex}
=> {tex}\tan {\rm{A}} = \pm \left( {x - {1 \over {4x}}} \right){/tex}
Therefore, {tex}\sec {\rm{A}} + \tan {\rm{A}} = x + {1 \over {4x}} + x - {1 \over {4x}} = 2x{/tex}
Or {tex}\sec {\rm{A}} + \tan {\rm{A}} = x + {1 \over {4x}} - x + {1 \over {4x}} = {1 \over {2x}}{/tex}
0Thank You