Find the sum of the deviations …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Ritika Pallai 5 years, 11 months ago
- 1 answers
Related Questions
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Yogita Ingle 5 years, 11 months ago
3, 4, 6, 7, 8, 14
Mean is given by: Mean={tex}\frac{Sum of observations}{total number ofobservations}{/tex}
{tex}Mean=\frac{3+4+6+7+8+14}{6}=\frac{42}{6}=7{/tex}
Thus, {tex}{\overline{x}}=7.{/tex}
Now,{tex} {\Delta}x_{1}={\overline{x}-x_{1}}=7-3=4{/tex}
{tex}|{\Delta}x_{2}|=|{\overline{x}-x_{2}}|=|7-4|=3{/tex}
{tex}|{\Delta}x_{3}|=|{\overline{x}-x_{3}}|=|7-6|=1{/tex}
{tex}|{\Delta}x_{4}|=|{\overline{x}-x_{4}}|=|7-7|=0{/tex}
{tex}|{\Delta}x_{5}|=|{\overline{x}-x_{5}}|=|7-8|=1{/tex}
{tex}{\Delta}x_{6}|=|{\overline{x}-x_{6}}|=|7-14|=7{/tex}
Sum of deviations of the variate values={tex}|{\Delta}x_{1}|+|{\Delta}x_{2}|+|{\Delta}x_{3}|+|{\Delta}x_{4}|+|{\Delta}x_{5}|+|{\Delta}x_{6}|{/tex}
=4+3+1+0+1+7=16
Therefore, the sum of deviations of the variate values is 16.
0Thank You