No products in the cart.

Let r,s, and t be root …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Let r,s, and t be root s of equation 8x^3 + 1001x +2008 =0 . The value of (r+s)^3 + (s+t)^3 + (t+r)^3 is

  • 1 answers

Rasmi Rv 8 years, 5 months ago

Let {tex}f(x)=8x^{ 3 }+1001x+2008=0\Rightarrow f(x)=8x^{ 3 }+0{ x }^{ 2 }+1001x+2008=0{/tex}

Given the roots of this equation are r,s,t.

Now using the relationship between the zeroes and coefficients of a cubic polynomial we have, 

 sum of the roots= {tex}r+s+t=\frac { -\left( 0 \right) }{ 8 } =0{/tex}.........................(i)

Also product of the roots={tex}rst=\frac { -\left( 2008 \right) }{ 8 } =-251{/tex}............(ii)

Now {tex}(r+s)^{ 3 }+(s+t)^{ 3 }+(t+r)^{ 3 }=(-t)^{ 3 }+(-r)^{ 3 }+(-s)^{ 3 }=-\left( t^{ 3 }+r^{ 3 }+s^{ 3 } \right) {/tex}.............(iii)          [using (i)]

But we can get  {tex}r^{ 3 }+s^{ 3 }+t^{ 3 }=\left( r+s+t \right) \left( r^{ 2 }+s^{ 2 }+t^{ 2 }-rs-st-tr \right) +3rst{/tex}

{tex}\Rightarrow r^{ 3 }+s^{ 3 }+t^{ 3 }=0+3\left( -251 \right) =-753{/tex}   [using (i) and (ii)]

Therefore from (iii) we have {tex}(r+s)^{ 3 }+(s+t)^{ 3 }+(t+r)^{ 3 }=-\left( t^{ 3 }+r^{ 3 }+s^{ 3 } \right) =-\left( -753 \right) =753{/tex}

 

https://examin8.com Test

Related Questions

Square of 169
  • 1 answers
(3+i)x + (1-2i) y +7i =0
  • 1 answers
2nC2:nC3=33:10
  • 0 answers
Ch 1 ke questions
  • 1 answers
Express the complex number i-39
  • 0 answers
Find the product. (4x²) (–5³)
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App