No products in the cart.

Show that if diagonals of a …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Show that if diagonals of a square are equal and bisect each other at right angle.
  • 2 answers

Arpit Kumar 4 years, 10 months ago

it is not possible

Yogita Ingle 4 years, 10 months ago

Let ABCD be a square. Let the diagonals AC and BD intersect each other at a point O. To prove

that the diagonals of a square are equal and bisect each other at right angles, we have to

prove AC = BD, OA = OC, OB = OD, and ∠AOB = 90º.

In ΔABC and ΔDCB,

AB = DC                   (Sides of a square are equal to each other)

∠ABC = ∠DCB        (All interior angles are of 90)

BC = CB                   (Common side)

So, ΔABC ≅ ΔDCB      (By SAS congruency)

Hence, AC = DB          (By CPCT)

Hence, the diagonals of a square are equal in length.

In ΔAOB and ΔCOD,

∠AOB = ∠COD          (Vertically opposite angles)

∠ABO = ∠CDO          (Alternate interior angles)

AB = CD                     (Sides of a square are always equal)

So, ΔAOB ≅ ΔCOD  (By AAS congruence rule)

Hence, AO = CO and OB = OD     (By CPCT)

Hence, the diagonals of a square bisect each other.

In ΔAOB and ΔCOB,

As we had proved that diagonals bisect each other, therefore,

AO = CO

AB = CB         (Sides of a square are equal)

BO = BO        (Common)

So, ΔAOB ≅ ΔCOB       (By SSS congruency)

Hence, ∠AOB = ∠COB      (By CPCT)

However, ∠AOB + ∠COB = 1800        (Linear pair)

2∠AOB = 1800

∠AOB = 900

Hence, the diagonals of a square bisect each other at right angles.

http://mycbseguide.com/examin8/

Related Questions

X³-12x²+39x-28
  • 0 answers
3√2×4√2×12√32
  • 0 answers
2x+5y
  • 0 answers
What is 38747484±393884747
  • 0 answers
Ch-1 introduction
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App