Let the sum of n, 2n, …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Pawan Y 6 years, 1 month ago
- 1 answers
Related Questions
Posted by Sabin Sultana 1 year, 4 months ago
- 0 answers
Posted by Ashish Chaudhary 1 year, 4 months ago
- 1 answers
Posted by Sana Dharwad 1 year, 4 months ago
- 0 answers
Posted by Manoj Thakur 1 year, 4 months ago
- 0 answers
Posted by Gurleen Kaur 1 year, 4 months ago
- 0 answers
Posted by Sethpoulou Apoulou 1 year, 5 months ago
- 0 answers
Posted by Ananya Sv 1 year, 4 months ago
- 1 answers
Posted by Nitin Kumar 1 year, 4 months ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 1 month ago
Given: {tex}{S_1} = {n \over 2}\left[ {2a + (n - 1)d} \right]{/tex} …..(i)
{tex}{S_2} = {{2n} \over 2}\left[ {2a + (2n - 1)d} \right]{/tex}…..(ii)
And {tex}{S_3} = {{3n} \over 2}\left[ {2a + (3n - 1)d} \right]{/tex}
Now, {tex}{S_2} - {S_1} = {{2n} \over 2}\left[ {2a + (2n - 1)d} \right] - {n \over 2}\left[ {2a + (n - 1)d} \right]{/tex}
{tex}\Rightarrow {S_2} - {S_1} = (n - {n \over 2})2a + \left[ {n(2n - 1) - {n \over 2}(n - 1)} \right]d{/tex}
{tex}= na + {1 \over 2}\left[ {4{n^2} - 2n - {n^2} + n} \right]d{/tex}
{tex}= {n \over 2}\left[ {2a + (3n - 1)d} \right] = {1 \over 3}\left\{ {{{3n} \over 2}\left[ {2a + (3n - 1)d} \right]} \right\} = {1 \over 3}{S_3}{/tex}
{tex}\Rightarrow {/tex} 3(S2 - S1) = S3
Hence proved.
1Thank You