No products in the cart.

If the radii of the circular …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

If the radii of the circular ends of a conical bucket, which is 16 cm high, are 20 cm and 8 cm, find the capacity and total surface area of the bucket
  • 1 answers

Sia ? 6 years, 2 months ago

Let us suppose that the Radius of the bigger end of the frustum (bucket) of cone = R = 20 cm
Suppose r denotes the Radius of the smaller end of the frustum (bucket) of the cone =  8 cm
Height = 16 cm
Now, Volume = {tex}\frac{1}{3} \pi{/tex}h[R2 + r2 + Rr]
= {tex}\frac{1}{3} \times \frac{22}{7} \times{/tex}16[202 + 82 + 20(8)]
= {tex}\frac{352}{21}{/tex}[400 + 64 + 160]
{tex}\frac{352\times 624}{21}{/tex}
{tex}\frac{219648}{21}{/tex}
= 10459.43 cm3
Now,
Slant height of the cone = l = {tex}\sqrt{(R -r)^2 + h^2}{/tex}
l = {tex}\sqrt{(20 -8)^2 +16^2}{/tex}
l = {tex}\sqrt{12^2 +16^2}{/tex}
l = {tex}\sqrt{144 + 256}{/tex}
l = {tex}\sqrt{400}{/tex}
l = 20 cm
Slant height is 20 cm
Now,
Surface area = {tex}\pi{/tex}[R2 + r2 + (R + r){tex}\times{/tex}l]
= {tex}\frac{22}{7}{/tex}[202 + 82 + (20 + 8){tex}\times{/tex}16]
= {tex}\frac{22}{7}{/tex}[400 + 64 + 448]
= {tex}\frac{22}{7} \times{/tex}912
= {tex}\frac{20064}{7}{/tex}
= 2866.29 cm

Thus, the surface area of the bucket is 28866.29

https://examin8.com Test

Related Questions

(A + B )²
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
Venu Gopal has twice
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
X-y=5
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App