No products in the cart.

State theorem of perpendicular and parallel …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

State theorem of perpendicular and parallel axis
  • 1 answers

Sia ? 6 years ago

Let m and r be the respective masses of the hollow cylinder and the solid sphere.
 moment of inertia of the hollow cylinder I1 = mr2
The moment of inertia of the solid sphere I2 {tex}= \frac { 2 } { 5 } m r ^ { 2 }{/tex}
We have the relation:
{tex}\tau = I a{/tex}
For the hollow cylinder, {tex}\tau _ { 1 } = I _ { 1 } \alpha _ { 1 }{/tex}
For the solid sphere, {tex}\tau _ { 2 } = I _ { 2 } \alpha _ { 2 }{/tex}
As an equal torque is applied to both the bodies, {tex}\tau _ { 1 } = \tau _ { 2 }{/tex}
{tex}\therefore \frac {\alpha_ { 2 } } { \alpha _ { 1 } } = \frac { I _ { 1} } { I _ { 2 } } = \frac { M r ^ { 2 } } { \frac { 2 } { 5 } M r ^ { 2 } } = \frac { 2 } { 5 }{/tex}
{tex}a _ { 2 } > a _ { 1 }{/tex} ….(i)
Now, using the relation:
{tex}\omega = \omega _ { 0 } + a t{/tex}
{tex}\omega \propto a{/tex} …(ii)
From equations (i) and (ii), we can write:
{tex}\omega _ { 2 } > \omega _ { 1 }{/tex}
Hence, the angular velocity of the solid sphere will be greater than that of the hollow cylinder.

http://mycbseguide.com/examin8/

Related Questions

2d+2d =
  • 1 answers
Project report
  • 0 answers
√kq,qpower2 R2
  • 0 answers
1dyne convert to S.I unit
  • 1 answers
Ch 1 question no. 14
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App