Prove that cos6x=32cos6 x-48cos4 +18cos2 x-1
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Sushant Patil 6 years ago
- 1 answers
Related Questions
Posted by Ananya Sv 1 year, 3 months ago
- 1 answers
Posted by Nitin Kumar 1 year, 2 months ago
- 1 answers
Posted by Sethpoulou Apoulou 1 year, 3 months ago
- 0 answers
Posted by Manoj Thakur 1 year, 2 months ago
- 0 answers
Posted by Sana Dharwad 1 year, 2 months ago
- 0 answers
Posted by Ashish Chaudhary 1 year, 2 months ago
- 1 answers
Posted by Gurleen Kaur 1 year, 3 months ago
- 0 answers
Posted by Sabin Sultana 1 year, 2 months ago
- 0 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Sia ? 6 years ago
LHS = {tex}\frac { 1 + \sin \theta - \cos \theta } { 1 + \sin \theta + \cos \theta }{/tex}
= {tex}\frac { ( 1 - \cos \theta ) + \sin \theta } { ( 1 + \cos \theta ) + \sin \theta }{/tex} = {tex}\frac { 2 \sin ^ { 2 } \frac { \theta } { 2 } + 2 \sin \frac { \theta } { 2 } \cdot \cos \frac { \theta } { 2 } } { 2 \cos ^ { 2 } \frac { \theta } { 2 } + 2 \sin \frac { \theta } { 2 } \cdot \cos \frac { \theta } { 2 } }{/tex}
[{tex}\because{/tex} sin2x = {tex}\frac { 1 - \cos 2 x } { 2 } \Rightarrow{/tex} {tex}2 sin^2x = 1 - cos 2x{/tex} and {tex}2sin^2 \frac{x}{2} = 1 - cosx{/tex} and {tex}2 cos^2{/tex} {tex}\frac { x } { 2 }{/tex} {tex}= 1 + cosx{/tex} and {tex}sinx = 2sin{/tex} {tex}\frac { x } { 2 }{/tex} {tex}\times{/tex} {tex}cos{/tex} {tex}\frac { x } { 2 }{/tex}]
= {tex}\frac { \sin ^ { 2 } \frac { \theta } { 2 } + \sin \frac { \theta } { 2 } \cdot \cos \frac { \theta } { 2 } } { \cos ^ { 2 } \frac { \theta } { 2 } + \sin \frac { \theta } { 2 } \cdot \cos \frac { \theta } { 2 } } = \frac { \sin \frac { \theta } { 2 } \left[ \sin \frac { \theta } { 2 } + \cos \frac { \theta } { 2 } \right] } { \cos \frac { \theta } { 2 } \left[ \cos \frac { \theta } { 2 } + \sin \frac { \theta } { 2 } \right] }{/tex}
= {tex}\frac { \sin \frac { \theta } { 2 } } { \cos \frac { \theta } { 2 } }{/tex} = tan {tex}\frac { \theta } { 2 }{/tex} = RHS
{tex}\therefore{/tex} LHS = RHS
Hence proved.
2Thank You