No products in the cart.

The sum of two digits no. …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

The sum of two digits no. and the no. obtaibed by reversing the digits 66 . if the digits of the no. differ. by 2 find the number . how many such no. are there?
  • 1 answers

Sia ? 6 years, 3 months ago

Suppose, the digit at units and tens place of the given number be x and y respectively.
{tex}\therefore{/tex} the number is {tex}10y + x{/tex}
After interchanging the digits, the number becomes {tex}10x + y{/tex}
Given: The sum of the numbers obtained by interchanging the digits and the original number is 66.
Thus, {tex}(10x + y) + (10y + x) =66{/tex}
{tex}\Rightarrow{/tex} {tex}10x + y + 10y + x = 66{/tex}
{tex}\Rightarrow{/tex} {tex}11x +11y =66{/tex}
{tex}\Rightarrow{/tex} {tex}11(x + y) = 66{/tex}
{tex}\Rightarrow x + y = \frac{{66}}{{11}}{/tex}
{tex}\Rightarrow{/tex} {tex}x + y = 6{/tex} .....(i)
Also given, the two digits of the number are differing by 2.
{tex}\therefore{/tex} we have {tex}x - y = ±2{/tex}....(ii)
So, we have two systems of simultaneous equations,
{tex}x - y = 2, \;x + y = 6{/tex}
{tex}x - y = -2, \;x + y = 6{/tex}
Here x and y are unknowns. We have to solve the above systems of equations for x and y.

  1. First, we solve the system
    {tex}x - y = 2{/tex}
    x + y = 6
    Adding the two equations,
    {tex}\Rightarrow(x - y) + (x + y) = 2 + 6{/tex}
    {tex}\Rightarrow{/tex} {tex}x - y + x + y = 8{/tex}
    {tex}\Rightarrow{/tex} {tex}2x = 8{/tex}
    {tex}\Rightarrow x = \frac{8}{2} {/tex}
    {tex}\Rightarrow{/tex}  {tex}x = 4{/tex}
    Substituting the value of x in the first equation, we have
    {tex}4 - y = 2{/tex}
    {tex}\Rightarrow{/tex} {tex}y = 4 - 2{/tex}
    {tex}\Rightarrow{/tex} {tex}y = 2{/tex}
    Hence, the number is 10 {tex}\times{/tex} 2 + 4 = 24
  2. Now, we solve the system
    {tex}x - y= -2{/tex}
    {tex}x + y = 6{/tex}
    Adding the two equations, we have
    {tex}(x - y) + (x + y) = -2 + 6{/tex}
    {tex}\Rightarrow{/tex} {tex}x - y + x + y = 4{/tex}
    {tex}\Rightarrow{/tex} {tex}2x = 4{/tex}
    {tex}\Rightarrow x = \frac{4}{2} {/tex}
    {tex}\Rightarrow{/tex} x = 2
    Substituting the value of x in the first equation, 
    {tex}\Rightarrow2 - y = -2{/tex}
    {tex}\Rightarrow{/tex} {tex}y = 2 + 2{/tex}
    {tex}\Rightarrow{/tex} y = 4
    Hence, the number is 10 {tex}\times{/tex} 4 + 2 = 42
    Thus, the two numbers are 24 and 42.
https://examin8.com Test

Related Questions

Venu Gopal has twice
  • 0 answers
(A + B )²
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
X-y=5
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App