The sum of two digits no. …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 3 months ago
Suppose, the digit at units and tens place of the given number be x and y respectively.
{tex}\therefore{/tex} the number is {tex}10y + x{/tex}
After interchanging the digits, the number becomes {tex}10x + y{/tex}
Given: The sum of the numbers obtained by interchanging the digits and the original number is 66.
Thus, {tex}(10x + y) + (10y + x) =66{/tex}
{tex}\Rightarrow{/tex} {tex}10x + y + 10y + x = 66{/tex}
{tex}\Rightarrow{/tex} {tex}11x +11y =66{/tex}
{tex}\Rightarrow{/tex} {tex}11(x + y) = 66{/tex}
{tex}\Rightarrow x + y = \frac{{66}}{{11}}{/tex}
{tex}\Rightarrow{/tex} {tex}x + y = 6{/tex} .....(i)
Also given, the two digits of the number are differing by 2.
{tex}\therefore{/tex} we have {tex}x - y = ±2{/tex}....(ii)
So, we have two systems of simultaneous equations,
{tex}x - y = 2, \;x + y = 6{/tex}
{tex}x - y = -2, \;x + y = 6{/tex}
Here x and y are unknowns. We have to solve the above systems of equations for x and y.
{tex}x - y = 2{/tex}
x + y = 6
Adding the two equations,
{tex}\Rightarrow(x - y) + (x + y) = 2 + 6{/tex}
{tex}\Rightarrow{/tex} {tex}x - y + x + y = 8{/tex}
{tex}\Rightarrow{/tex} {tex}2x = 8{/tex}
{tex}\Rightarrow x = \frac{8}{2} {/tex}
{tex}\Rightarrow{/tex} {tex}x = 4{/tex}
Substituting the value of x in the first equation, we have
{tex}4 - y = 2{/tex}
{tex}\Rightarrow{/tex} {tex}y = 4 - 2{/tex}
{tex}\Rightarrow{/tex} {tex}y = 2{/tex}
Hence, the number is 10 {tex}\times{/tex} 2 + 4 = 24
{tex}x - y= -2{/tex}
{tex}x + y = 6{/tex}
Adding the two equations, we have
{tex}(x - y) + (x + y) = -2 + 6{/tex}
{tex}\Rightarrow{/tex} {tex}x - y + x + y = 4{/tex}
{tex}\Rightarrow{/tex} {tex}2x = 4{/tex}
{tex}\Rightarrow x = \frac{4}{2} {/tex}
{tex}\Rightarrow{/tex} x = 2
Substituting the value of x in the first equation,
{tex}\Rightarrow2 - y = -2{/tex}
{tex}\Rightarrow{/tex} {tex}y = 2 + 2{/tex}
{tex}\Rightarrow{/tex} y = 4
Hence, the number is 10 {tex}\times{/tex} 4 + 2 = 42
Thus, the two numbers are 24 and 42.
0Thank You