Prove that tan A + sec …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Adarsh Roy 6 years, 3 months ago
- 1 answers
Related Questions
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 3 months ago
{tex}\frac{{\tan A + \sec A - 1}}{{\tan A - \sec A + 1}} = \frac{{\tan A + \sec A - ({{\sec }^2}A - {{\tan }^2}A)}}{{\tan A - \sec A + 1}}{/tex} [{tex}\because{/tex} 1 + tan2A = sec2A {tex}\Rightarrow{/tex} sec2A - tan2A = 1]
{tex} = \frac{{\tan A + \sec A - \{ (\sec A - \tan A)(\sec A + \tan A)\} }}{{\tan A - \sec A + 1}}{/tex}
Now, take (tanA + secA) as a common term, we get
{tex} = \frac{{(\tan A + \sec A)(1 - \sec A + \tan A)}}{{\tan A - \sec A + 1}}{/tex}
= tanA + secA
{tex} = \frac{{\sin A}}{{\cos A}} + \frac{1}{{\cos A}}{/tex}
{tex} = \frac{{1 + \sin A}}{{\cos A}}{/tex}
{tex}\therefore{/tex} Hence proved
0Thank You