No products in the cart.

The ratio of the area of …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

The ratio of the area of two similar triangles in equal to the square of the ratio of there crosponding side
  • 1 answers

Sia ? 6 years, 3 months ago

Given : {tex}\Delta A B C \sim \Delta P Q R{/tex}
To Prove : {tex}\frac { \operatorname { ar } ( \Delta A B C ) } { \operatorname { ar } ( \Delta P Q R ) } = \left( \frac { A B } { P Q } \right) ^ { 2 }= \left( \frac { BC } { QR } \right) ^ { 2 }= \left( \frac { A C } { P R } \right) ^ { 2 }{/tex}
Construction: Draw AD {tex} \bot {/tex}BC and PE {tex} \bot {/tex} QR
Proof :

{tex}\Delta A B C \sim \Delta P Q R{/tex} 
{tex}\therefore\frac { A B } { P Q } = \frac { B C } { Q R } = \frac { A C } { P R }{/tex} ( Ratio of corresponding sides of similar triangles are equal) ...(i)
{tex}\angle B = \angle Q{/tex} (Corresponding angles of similar triangles)......... (ii)
In {tex}\Delta A D B \text { and } \Delta P E Q{/tex} 
{tex}\angle B = \angle Q{/tex} ( From (ii)) 
{tex}\angle A D B = \angle P E Q{/tex} {tex}\left[\; \operatorname { each } 90 ^ { \circ } \right]{/tex} 
{tex}\therefore {/tex} {tex}\Delta A D B \sim \Delta P E Q{/tex} [ By AA criteria] 
{tex}\Rightarrow{/tex} {tex}\frac { A D } { P E } = \frac { A B } { P Q }{/tex}  (Corresponding sides of similar triangles) ...(iii)
From equation (i) and equation (iii)
{tex}\frac { A B } { P Q } = \frac { B C } { Q R } = \frac { A C } { P R } = \frac { A D } { P E }{/tex} ...(iv)
{tex}\frac { \operatorname { ar } ( \Delta A B C ) } { \operatorname { ar } ( \Delta P Q R ) } = \frac { \frac { 1 } { 2 } \times B C \times A D } { \frac { 1 } { 2 } \times Q R \times P E }{/tex} 
{tex}= \left( \frac { B C } { Q R } \right) \times \left( \frac { A D } { P E } \right){/tex} 
({tex}\frac{AD}{PE}=\frac{BC}{QR}{/tex}
{tex}= \frac { B C } { Q R } \times \frac { B C } { Q R }{/tex} 
{tex}\Rightarrow{/tex} {tex}\frac { a r ( \Delta A B C ) } { a r ( \Delta P Q R ) } = \frac { B C ^ { 2 } } { Q R ^ { 2 } }{/tex} ....(v) [from eq. (iv)]
From equation (iv) and equation (v),
{tex}\therefore\frac { \operatorname { ar } ( \Delta A B C ) } { \operatorname { ar } ( \Delta P Q R ) } = \left( \frac { A B } { P Q } \right) ^ { 2 }= \left( \frac { BC } { QR } \right) ^ { 2 }= \left( \frac { A C } { P R } \right) ^ { 2 }{/tex}
{tex}\therefore{/tex} Ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

https://examin8.com Test

Related Questions

(A + B )²
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
X-y=5
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers
Venu Gopal has twice
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App