If the sum of first m …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Let a be the first term and d be the common difference of the given A.P. Then,
Sm = Sn
{tex}\Rightarrow \quad \frac { m } { 2 } \{ 2 a + ( m - 1 ) d \} = \frac { n } { 2 } \{ 2 a + ( n - 1 ) d \}{/tex}
{tex} \Rightarrow{/tex} 2a (m - n) + {m (m - 1) - n (n - 1)} d = 0
{tex} \Rightarrow{/tex} 2a (m - n) + {m2 - m - n2 + n}d = 0
{tex} \Rightarrow{/tex} 2a (m - n) + {(m2 - n2) - (m - n)} d = 0
{tex} \Rightarrow{/tex}2a (m - n) + {(m - n) (m +n) - (m - n)} d = 0
{tex} \Rightarrow{/tex} (m - n) {2a + (m + n - 1)d} = 0
{tex} \Rightarrow{/tex} 2a + (m + n - 1)d = 0 {tex} [ \because m - n \neq 0 ]{/tex} ...(i)
Now, {tex} S _ { m + n } = \frac { m + n } { 2 } \{ 2 a + ( m + n - 1 ) d \} = \frac { m + n } { 2 } \times {/tex}0 = 0 [Using (i)]
0Thank You