Prove that sin theeta - 2sin^3 …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Khushi ?? 6 years, 4 months ago
- 1 answers
Related Questions
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
LHS = (sin{tex}\theta{/tex} - 2sin3{tex}\theta{/tex})
= sin{tex}\theta{/tex}(1 - 2sin2{tex}\theta{/tex})
RHS = (2cos3{tex}\theta{/tex} - cos{tex}\theta{/tex})tan{tex}\theta{/tex}
= cos{tex}\theta{/tex}(2cos2{tex}\theta{/tex} - 1){tex}\frac { \sin \theta } { \cos \theta }{/tex}
= [2(1 - sin2{tex}\theta{/tex}) - 1)sin{tex}\theta{/tex}
= (2 - 2sin2{tex}\theta{/tex} -1)sin{tex}\theta{/tex}
= (1 - 2sin2{tex}\theta{/tex})sin{tex}\theta{/tex}
{tex}\Rightarrow{/tex} LHS = RHS
{tex}\therefore{/tex} (sin{tex}\theta{/tex} - 2sin3{tex}\theta{/tex}) = (2cos3{tex}\theta{/tex} - cos{tex}\theta{/tex})tan{tex}\theta{/tex}
1Thank You