No products in the cart.

The vertices of a triangle are …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

The vertices of a triangle are A(4,6) B(3,-2) C(5,2). Prove that median of the triangle divides it into two triangles of equal area
  • 1 answers

Sia ? 6 years, 3 months ago

AD is the median of {tex}\triangle{/tex}ABC from vertex A
D(x, y) = {tex}\left( \frac { 3 + 5 } { 2 } , \frac { - 2 + 2 } { 2 } \right){/tex}= (4, 0)


Area of {tex}\Delta{/tex}ADB ={tex}\frac { 1 } { 2 } \times {/tex}(4 (0 + 2) + 4 (-2 + 6) + 3 (- 6 - 0))
{tex}\frac { 1 } { 2 } \times {/tex}(8 + 16 + -18)
{tex}\frac { 1 } { 2 } \times {/tex}6 = 3 square units.........(i)
Area of {tex}\Delta{/tex}ACD
{tex}\frac { 1 } { 2 } \times{/tex} ( 4(0 - 2) + 4(2 + 6) + 5 (- 6 - 0))
{tex}\frac { 1 } { 2 } \times{/tex}(-8 + 32 - 30)
{tex}\frac { 1 } { 2 } \times{/tex}-6 = -3
Since area can not the negative
Area of {tex}\Delta{/tex}ACD = 3 square units .........(ii)
From (i) and (ii) Area {tex}\Delta{/tex}ADB = Area {tex}\Delta{/tex}ACD, it is verified that median of ∆ABC divides it into two triangles of equal areas.

https://examin8.com Test

Related Questions

Prove that root 8 is an irration number
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
Venu Gopal has twice
  • 0 answers
X-y=5
  • 1 answers
(A + B )²
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App