Given seco=13/12, calculate all trigonometrc ratios.

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Suniksha Bhatia 6 years, 4 months ago
- 3 answers
Tanisha Yadav 6 years, 4 months ago
Anshuman Singh Chouhan 6 years, 4 months ago
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Consider a triangle ABC in which {tex}\angle A = \theta {/tex} and {tex}\angle B = {90^o}{/tex}

Let AB = 12k and AC = 13k
Then, using Pythagoras theorem,
{tex}BC=\sqrt { ( \mathrm { AC } ) ^ { 2 } - ( \mathrm { AB } ) ^ { 2 } } = \sqrt { ( 13 k ) ^ { 2 } - ( 12 k ) ^ { 2 } }{/tex}
{tex}= \sqrt { 169 k ^ { 2 } - 144 k ^ { 2 } } = \sqrt { 25 k ^ { 2 } } = 5 k{/tex}
{tex}\therefore {/tex} {tex}\sin \theta = \frac { B C } { A C } = \frac { 5 k } { 13 k } = \frac { 5 } { 13 }{/tex}
{tex}\cos \theta = \frac { A B } { A C } = \frac { 12 k } { 13 k } = \frac { 12 } { 13 } \tan \theta = \frac { B C } { A B } = \frac { 5 k } { 12 k } = \frac { 5 } { 12 }{/tex}
{tex}\cot \theta = \frac { A B } { B C } = \frac { 12 k } { 5 k } = \frac { 12 } { 5 } \cos e c \theta = \frac { A C } { B C } = \frac { 13 k } { 5 k } = \frac { 13 } { 5 }{/tex}
1Thank You