Triangle ABC and triangle BDE are …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
Let the side of triangle = a
{tex}\therefore{/tex} BC = a {tex}\Rightarrow{/tex} BD = {tex}\frac{a}{2}{/tex}
Now area({tex}\triangle{/tex}BDE) = {tex}\frac{\sqrt{3}}{4}{/tex}({tex}\frac{a}{2}{/tex})2 = {tex}\frac{\sqrt{3}}{4}{/tex}{tex}\frac{a^2}{4}{/tex} = {tex}\frac{1}{4}{/tex}({tex}\frac{\sqrt{3}}{4}{/tex}a2) = {tex}\frac{1}{4}{/tex}area ({tex}\triangle{/tex}ABC).
or area({tex}\triangle{/tex}BDE)/area ({tex}\triangle{/tex}ABC) = {tex}\frac{1}{4}{/tex}
Hence proved.
0Thank You