A train was moving with uniform …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
A train was moving with uniform speed.after covering a distance of 30 km , some defect developer in the engine of train and for this reason , its speed is reduced to 4/5 of its original speed. the train reaches its destination late by 45 minutes. in case the defect had happened after covering 18 km more ,the train would have reached just 36 minutes late. find the speed of the train at the start and the total distance of the journey.
Posted by Chirag Mishra 6 years, 3 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 3 months ago
Suppose the original speed of the train be x km/hr
The length of the journey be y km. Then
Time taken =(y/x)hrs.
CASE I:
When defect in the engine occurs after covering a distance of 30 km.
Speed for first 30km=x km/hr
Speed for the remaining {tex}(y - 30)km{/tex}={tex}= \frac { 4 } { 5 } x \mathrm { km } / \mathrm { hrs }{/tex}
{tex}\therefore{/tex} Time taken to cover {tex}30km{/tex} {tex}= \frac { 30 } { x }hrs{/tex}
Time taken to cover {tex}(y - 30)km{/tex}={tex}\frac { y - 30 } { ( 4 x / 5 ) } \text { hrs. } = \frac { 5 } { 4 x } ( y - 30 )hrs.{/tex}
{tex}\Rightarrow \frac { 30 } { x } + \frac { 5 } { 4 x } ( y - 30 ) = \frac { y } { x } + \frac { 45 } { 60 }{/tex}
{tex}\Rightarrow \quad \frac { 30 } { x } + \frac { 5 y - 150 } { 4 x } = \frac { y } { x } + \frac { 3 } { 4 }{/tex}
{tex}\Rightarrow \quad \frac { 120 + 5 y - 150 } { 4 x } = \frac { 4 y + 3 x } { 4 x }{/tex}
{tex}\Rightarrow{/tex} {tex}5y - 30=4y + 3x{/tex}
{tex}\Rightarrow{/tex}{tex}3x - y +30=0 {/tex}.................................(i)
CASE II:
When defect in the engine occurs after covering a distance of 48 km.
Speed for first {tex}48km =x\ km/hr{/tex}.
Speed for the remaining {tex}(y -48){/tex} {tex}\mathrm { km } = \frac { 4 x } { 5 } \mathrm { km } / \mathrm { hr }{/tex}
{tex}\therefore{/tex}Time taken to cover {tex}48 km{/tex} = {tex}\frac { 48 } { x }hrs.{/tex}
Time taken to cover {tex}(y-48)km{/tex} = {tex}\left( \frac { y - 48 } { 4 x / 5 } \right) \mathrm { hr } = \left\{ \frac { 5 ( y - 48 ) } { 4 x } \right\} \mathrm { hr }{/tex}
According to the given condition, the train now reaches 9 minutes earlier i.e., 36 minutes later.
{tex}\frac { 48 } { x } + \frac { 5 ( y - 48 ) } { 4 x } = \frac { y } { x } + \frac { 36 } { 60 }{/tex}
{tex}\Rightarrow \quad \frac { 48 } { x } + \frac { 5 y - 240 } { 4 x } = \frac { y } { x } + \frac { 3 } { 5 }{/tex}
{tex}\Rightarrow \quad \frac { 192 + 5 y - 240 } { 4 x } = \frac { 5 y + 3 x } { 5 x }{/tex}
{tex}\Rightarrow \quad \frac { 5 y - 48 } { 4 } = \frac { 5 y + 3 x } { 5 }{/tex}
{tex}\Rightarrow{/tex}{tex}25y - 240 = 20y + 12x{/tex}
{tex}\Rightarrow{/tex}{tex}12x - 5y + 240=0{/tex} ................................(ii)
{tex}3x - y + 30 =0{/tex}
{tex}12x - 5y + 240=0{/tex}
Using cross-multiplication, we have
{tex}\frac { x } { - 240 + 150 } = \frac { - y } { 720 - 360 } = \frac { 1 } { - 15 + 12 }{/tex}
{tex}\Rightarrow \quad \frac { x } { - 90 } = \frac { - y } { 360 } = \frac { 1 } { - 3 }{/tex}
{tex}\Rightarrow \quad x = \frac { - 90 } { - 3 } = 30 \text { and } y = \frac { - 360 } { - 3 } = 120{/tex}
The original speed of the train is {tex}30km/hr{/tex} and the length of the journey is 120 km.
0Thank You