No products in the cart.

A train was moving with uniform …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

A train was moving with uniform speed.after covering a distance of 30 km , some defect developer in the engine of train and for this reason , its speed is reduced to 4/5 of its original speed. the train reaches its destination late by 45 minutes. in case the defect had happened after covering 18 km more ,the train would have reached just 36 minutes late. find the speed of the train at the start and the total distance of the journey.
  • 1 answers

Sia ? 6 years, 3 months ago

Suppose the original speed of the train be x km/hr

The length of the journey be y km. Then
Time taken =(y/x)hrs.
CASE I:

When defect in the engine occurs after covering a distance of 30 km.
Speed for first 30km=x km/hr
Speed for the remaining {tex}(y - 30)km{/tex}={tex}= \frac { 4 } { 5 } x \mathrm { km } / \mathrm { hrs }{/tex}
{tex}\therefore{/tex} Time taken to cover {tex}30km{/tex} {tex}= \frac { 30 } { x }hrs{/tex}
Time taken to cover {tex}(y - 30)km{/tex}={tex}\frac { y - 30 } { ( 4 x / 5 ) } \text { hrs. } = \frac { 5 } { 4 x } ( y - 30 )hrs.{/tex}
{tex}\Rightarrow \frac { 30 } { x } + \frac { 5 } { 4 x } ( y - 30 ) = \frac { y } { x } + \frac { 45 } { 60 }{/tex}
{tex}\Rightarrow \quad \frac { 30 } { x } + \frac { 5 y - 150 } { 4 x } = \frac { y } { x } + \frac { 3 } { 4 }{/tex}
{tex}\Rightarrow \quad \frac { 120 + 5 y - 150 } { 4 x } = \frac { 4 y + 3 x } { 4 x }{/tex}
{tex}\Rightarrow{/tex} {tex}5y - 30=4y + 3x{/tex}
{tex}\Rightarrow{/tex}{tex}3x - y +30=0 {/tex}.................................(i)
CASE II:

When defect in the engine occurs after covering a distance of 48 km.
Speed for first {tex}48km =x\ km/hr{/tex}.
Speed for the remaining {tex}(y -48){/tex} {tex}\mathrm { km } = \frac { 4 x } { 5 } \mathrm { km } / \mathrm { hr }{/tex}
{tex}\therefore{/tex}Time taken to cover {tex}48 km{/tex}{tex}\frac { 48 } { x }hrs.{/tex}
Time taken to cover {tex}(y-48)km{/tex}{tex}\left( \frac { y - 48 } { 4 x / 5 } \right) \mathrm { hr } = \left\{ \frac { 5 ( y - 48 ) } { 4 x } \right\} \mathrm { hr }{/tex}
According to the given condition, the train now reaches 9 minutes earlier i.e., 36 minutes later.
 {tex}\frac { 48 } { x } + \frac { 5 ( y - 48 ) } { 4 x } = \frac { y } { x } + \frac { 36 } { 60 }{/tex}
{tex}\Rightarrow \quad \frac { 48 } { x } + \frac { 5 y - 240 } { 4 x } = \frac { y } { x } + \frac { 3 } { 5 }{/tex}
{tex}\Rightarrow \quad \frac { 192 + 5 y - 240 } { 4 x } = \frac { 5 y + 3 x } { 5 x }{/tex}
{tex}\Rightarrow \quad \frac { 5 y - 48 } { 4 } = \frac { 5 y + 3 x } { 5 }{/tex}
{tex}\Rightarrow{/tex}{tex}25y - 240 = 20y + 12x{/tex}
{tex}\Rightarrow{/tex}{tex}12x - 5y + 240=0{/tex} ................................(ii)
{tex}3x - y + 30 =0{/tex}
{tex}12x  - 5y + 240=0{/tex}
Using cross-multiplication, we have
{tex}\frac { x } { - 240 + 150 } = \frac { - y } { 720 - 360 } = \frac { 1 } { - 15 + 12 }{/tex}
{tex}\Rightarrow \quad \frac { x } { - 90 } = \frac { - y } { 360 } = \frac { 1 } { - 3 }{/tex}
{tex}\Rightarrow \quad x = \frac { - 90 } { - 3 } = 30 \text { and } y = \frac { - 360 } { - 3 } = 120{/tex}
The original speed of the train is {tex}30km/hr{/tex} and the length of the journey is 120 km.

https://examin8.com Test

Related Questions

X-y=5
  • 1 answers
Venu Gopal has twice
  • 0 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
(A + B )²
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App