A/x-b/y =0 Ab^2/x+a^2b/y=a^2+b^2

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Jai Shree Shyam 6 years, 3 months ago
- 1 answers
Related Questions
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 3 months ago
Taking {tex}\frac { 1 } { x } = u{/tex} and {tex}\frac { 1 } { y } = v{/tex}, the above system of equation becomes
{tex}{/tex}au - vb = 0............ (i)
{tex}{/tex} {tex}{/tex}ab2u + a2bv = a2 + b2.......... (ii)
By cross-multiplication, using (i) and (ii) we have
{tex}\frac { u } { - b \times - \left( a ^ { 2 } + b ^ { 2 } \right) - a ^ { 2 } b \times 0 } = \frac { - v } { a \times - \left( a ^ { 2 } + b ^ { 2 } \right) - a b ^ { 2 } \times 0 } = \frac { 1 } { a \times a ^ { 2 } b - a b ^ { 2 }( - b) }{/tex}
{tex}\Rightarrow \quad \frac { u } { b \left( a ^ { 2 } + b ^ { 2 } \right) } = \frac { - v } { - a \left( a ^ { 2 } + b ^ { 2 } \right) } = \frac { 1 } { a ^ { 3 } b + a b ^ { 3 } }{/tex}
{tex}\Rightarrow \quad \frac { u } { b \left( a ^ { 2 } + b ^ { 2 } \right) } = \frac { v } { a \left( a ^ { 2 } + b ^ { 2 } \right) } = \frac { 1 } { a b \left( a ^ { 2 } + b ^ { 2 } \right) }{/tex}
{tex}\Rightarrow \quad u = \frac { b \left( a ^ { 2 } + b ^ { 2 } \right) } { a b \left( a ^ { 2 } + b ^ { 2 } \right) } = \frac { 1 } { a } \text { and } v = \frac { a \left( a ^ { 2 } + b ^ { 2 } \right) } { a b \left( a ^ { 2 } + b ^ { 2 } \right) } = \frac { 1 } { b }{/tex}
Now, {tex}u = \frac { 1 } { a } {/tex}
{tex}\Rightarrow \frac { 1 } { x } = \frac { 1 } { a } {/tex}
{tex}\Rightarrow {/tex} x = a
and {tex}v = \frac { 1 } { b } {/tex}
{tex}\Rightarrow \frac { 1 } { y } = \frac { 1 } { b }{/tex}
{tex} \Rightarrow{/tex} y = b
Hence, the solution of the given system of equation is x = a, y = b.
0Thank You