No products in the cart.

If theta is positive acute angle …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

If theta is positive acute angle then solve the equation:--

4cos^2 theta -- 4 sin theta =1

  • 1 answers

Rashmi Bajpayee 8 years, 6 months ago

{tex}4{\cos ^2}\theta - 4\sin \theta = 1{/tex}

=>          {tex}4\left( {1 - {{\sin }^2}\theta } \right) - 4\sin \theta = 1{/tex}

=>          {tex}4 - 4{\sin ^2}\theta - 4\sin \theta = 1{/tex}

=>          {tex} - 4{\sin ^2}\theta - 4\sin \theta + 4 - 1 = 0{/tex}

=>          {tex}4{\sin ^2}\theta + 4\sin \theta - 3 = 0{/tex}

=>          {tex}4{\sin ^2}\theta + 6\sin \theta - 2\sin \theta - 3 = 0{/tex}

=>          {tex}2\sin \theta \left( {2\sin \theta + 3} \right) - 1\left( {2\sin \theta + 3} \right) = 0{/tex}

=>          {tex}\left( {2\sin \theta + 3} \right)\left( {2\sin \theta - 1} \right) = 0{/tex}

=>          {tex}2\sin \theta + 3 = 0{/tex}  or   {tex}2\sin \theta - 1 = 0{/tex}

=>          {tex}\sin \theta = {{ - 3} \over 2}{/tex}  or  {tex}\sin \theta = {1 \over 2}{/tex}

But {tex}\theta {/tex} is positive, therefore, taking

{tex}\sin \theta = {1 \over 2}{/tex}

=>        {tex}\sin \theta = \sin {30^ \circ }{/tex}

=>        {tex}\theta = {30^ \circ }{/tex}

https://examin8.com Test

Related Questions

Ch 1 ke questions
  • 1 answers
Express the complex number i-39
  • 0 answers
Find the product. (4x²) (–5³)
  • 0 answers
Square of 169
  • 1 answers
(3+i)x + (1-2i) y +7i =0
  • 1 answers
2nC2:nC3=33:10
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App