If alpha and beta are zeroes …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
α,β are zeros of ax2+bx+c
{tex}\mathrm{Then}\;\mathrm\alpha+\mathrm\beta=-\frac{\mathrm b}{\mathrm a}\;\mathrm{and}\;\mathrm{αβ}=\frac{\mathrm c}{\mathrm a}{/tex}
α4 + β4= (α2 + β2)2 - 2α2β2
=((α + β)2 - 2αβ)2 - (2αβ)2
{tex}={\left[ {\left( { - \frac{b}{a}} \right) - 2\left( {\frac{c}{a}} \right)} \right]^2} - \left[ {2{{\left( {\frac{c}{a}} \right)}^2}} \right]{/tex}
{tex} = {\left[ {\frac{{{b^2} - 2ac}}{{{a^2}}}} \right]^2} - \frac{{2{c^2}}}{{{a^2}}}{/tex}
{tex} = \frac{{{{\left( {{b^2} - 2ac} \right)}^2} - 2{a^2}{c^2}}}{{{a^4}}}{/tex}.
0Thank You