a+b+c=5 and ab+bc+ac=10, then orove that …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Neha Krishnan 5 years, 3 months ago
- 1 answers
Related Questions
Posted by Gnani Yogi 3 months, 2 weeks ago
- 0 answers
Posted by T Prudhvi 4 weeks ago
- 0 answers
Posted by Akhilesh Patidar 3 months, 2 weeks ago
- 0 answers
Posted by Alvin Thomas 3 months, 2 weeks ago
- 0 answers
Posted by Savitha Savitha 3 months, 3 weeks ago
- 0 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Sia ? 5 years, 3 months ago
As we know,
{tex}a ^ { 3 } + b ^ { 3 } + c ^ { 3 } - 3 a b c ={/tex}{tex}( a + b + c ) \left( a ^ { 2 } + b ^ { 2 } + c ^ { 2 } - a b - b c - c a \right){/tex}
{tex}= ( a + b + c ) \left[ a ^ { 2 } + b ^ { 2 } + c ^ { 2 } - ( a b + b c + c a ) \right]{/tex}
{tex}= 5 \left\{ a ^ { 2 } + b ^ { 2 } + c ^ { 2 } - ( a b + b c + c a ) \right\}{/tex}
{tex}= 5 \left( a ^ { 2 } + b ^ { 2 } + c ^ { 2 } - 10 \right){/tex}
Now, {tex} a + b + c = 5{/tex}
Squaring both sides, we get
{tex}( a + b + c ) ^ { 2 } = 5 ^ { 2 }{/tex}
{tex}\Rightarrow a ^ { 2 } + b ^ { 2 } + c ^ { 2 } + 2 ( a b + b c + c a ) = 25{/tex}
{tex}\therefore a ^ { 2 } + b ^ { 2 } + c ^ { 2 } + 2 ( 10 ) = 25{/tex}
{tex}\Rightarrow a ^ { 2 } + b ^ { 2 } + c ^ { 2 } = 25 - 20 = 5{/tex}
Now, {tex}a ^ {3} + b ^ {3} + c ^ { 3 } - 3 a b c = 5 \left( a ^ { 2 } + b ^ { 2 } + c ^ { 2 } - 10 \right){/tex}
{tex}= 5 ( 5 - 10 ) = 5 ( - 5 ) = - 25{/tex}
Hence, proved.
0Thank You