LM || AB if AL = …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Pratyush Jadhav 6 years, 3 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 3 months ago
We have, AL = x - 3, AC = 2x, BM = x - 2 and BC = 2x + 3, and we need to find the value of x.
In {tex}\Delta{/tex}ABC, we have

{tex}L M \| A B{/tex}
{tex}\therefore \quad \frac { A L } { L C } = \frac { B M } { M C }{/tex} [By Thaley's Theorem]
{tex}\Rightarrow \quad \frac { A L } { A C - A L } = \frac { B M } { B C - B M }{/tex}
{tex}\Rightarrow \quad \frac { x - 3 } { 2 x - ( x - 3 ) } = \frac { x - 2 } { ( 2 x + 3 ) - ( x - 2 ) }{/tex}
{tex}\Rightarrow \quad \frac { x - 3 } { x + 3 } = \frac { x - 2 } { x + 5 }{/tex}
{tex} \Rightarrow{/tex} (x - 3) (x + 5) = (x - 2) (x + 3)
{tex} \Rightarrow{/tex} x2 + 2x -15 = x2 + x - 6
{tex} \Rightarrow{/tex} x = 9
0Thank You