if asinA+bcosA=c,then prove that acosA-bsinA=root of …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Ramesh N K Shetty 6 years, 5 months ago
- 1 answers
Related Questions
Posted by Kanika . 1 month ago
- 1 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
We have, {tex}asin\theta+bcos\theta=c{/tex}
On squaring both sides, we get
{tex}(asin\theta+bcos\theta)^2=c^2{/tex}
(a sin θ)2 + (b cos θ)2 + 2(a sin θ) (b cos θ) = c2
⇒ a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ = c2
⇒ a2(1 – cos2 θ) + b2 (1 – sin2 θ) + 2 ab sin θ cos θ = c2 {tex}[\because sin^2\theta+cos^2\theta=1]{/tex}
⇒ a2 – a2 cos2 θ + b2 – b2 sin2 θ + 2ab sin θ cos θ = c2
⇒ –a2 cos2 θ – b2 sin2 θ + 2ab sin θ cos θ = c2 – a2 – b2
Taking Negative common,
⇒ a2 cos2 θ + b2 sin2 θ – 2ab sin θ cos θ = a2 + b2 – c2
⇒ (a cos θ)2 + (b sin θ)2 – 2(a cos θ) (b sin θ) = a2 + b2 – c2
⇒ {tex}(acos\theta-bsin\theta)^2=a^2+b^2-c^2{/tex}
⇒{tex}acos\theta-bsin\theta{/tex} = {tex}\pm \sqrt { a ^ { 2 } + b ^ { 2 } - c ^ { 2 } }{/tex}
Hence proved, {tex}acos\theta-bsin\theta{/tex} = {tex}\sqrt{a^2+b^2-c^2}{/tex}
1Thank You