if asinA+bcosA=c,then prove that acosA-bsinA=root of …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Ramesh N K Shetty 5 years, 9 months ago
- 1 answers
Related Questions
Posted by Parinith Gowda Ms 9 months, 2 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 9 months, 2 weeks ago
- 2 answers
Posted by Parinith Gowda Ms 9 months, 2 weeks ago
- 0 answers
Posted by Lakshay Kumar 5 months, 3 weeks ago
- 0 answers
Posted by Hari Anand 6 months ago
- 0 answers
Posted by S Prajwal 3 months, 3 weeks ago
- 0 answers
Posted by Kanika . 7 months, 2 weeks ago
- 1 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Sia ? 5 years, 9 months ago
We have, asinθ+bcosθ=c
On squaring both sides, we get
(asinθ+bcosθ)2=c2
(a sin θ)2 + (b cos θ)2 + 2(a sin θ) (b cos θ) = c2
⇒ a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ = c2
⇒ a2(1 – cos2 θ) + b2 (1 – sin2 θ) + 2 ab sin θ cos θ = c2 [∵sin2θ+cos2θ=1]
⇒ a2 – a2 cos2 θ + b2 – b2 sin2 θ + 2ab sin θ cos θ = c2
⇒ –a2 cos2 θ – b2 sin2 θ + 2ab sin θ cos θ = c2 – a2 – b2
Taking Negative common,
⇒ a2 cos2 θ + b2 sin2 θ – 2ab sin θ cos θ = a2 + b2 – c2
⇒ (a cos θ)2 + (b sin θ)2 – 2(a cos θ) (b sin θ) = a2 + b2 – c2
⇒ (acosθ−bsinθ)2=a2+b2−c2
⇒acosθ−bsinθ = ±√a2+b2−c2
Hence proved, acosθ−bsinθ = √a2+b2−c2
1Thank You