Use Euclids division lemma to show …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
Let a = 3q + r {tex}: 0 \leq r < 3{/tex}
{tex}\therefore \quad a = 3 q ; \text { then } a ^ { 3 } = 27 q ^ { 3 } = 9 m ; \text { where } m = 3 q ^ { 3 }{/tex}
{tex}\text { when } a = 3 q + 1 ; \text { then } a = 27 q ^ { 2 } + 27 q ^ { 2 } + 9 q + 1{/tex}
{tex}= 9 \left( 3 q ^ { 3 } + 3 q ^ { 2 } + q \right) + 1{/tex}
{tex}= 9 m + 8 \quad \left( \text { where } m = 3 q ^ { 3 } + 3 q ^ { 2 } + q \right){/tex}
{tex}\text { when } a = 3 q + 2 ; \text { then } a ^ { 3 } = ( 3 q + 2 ) ^ { 2 }{/tex}
{tex}= 27 q ^ { 3 } + 54 q ^ { 2 } + 36 q + 8{/tex}
{tex}= 9 m + 8 \quad \left( \text { where } m = 3 q ^ { 3 } + 6 q ^ { 2 } + 4 q \right){/tex}
{tex}= 9 m + 8 \quad \left( \text { where } m = 3 q ^ { 3 } + 6 q ^ { 2 } + 4 q \right){/tex}
Hence, cubes of any positive integer is either of the from 9m, (9m + 1) or (9m + 8).
1Thank You