Trisection of the line segment joining …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Priyanshu Vijay 6 years, 3 months ago
- 1 answers
Related Questions
Posted by Kanika . 1 month ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 3 months ago
Let P and Q be the points of trisection as shown below

Then, AP : PB = 1 : 2
and AQ : QB = 2 : 1
Here, {tex}\frac{m_{1}}{m_{2}}=\frac{1}{2},{/tex} A(x1, y1) = (2, -3) and B(x2, y2) = (4, -1)
For internally, {tex}P=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right){/tex}
{tex}\Rightarrow \quad P=\left(\frac{1 \times 4+2 \times 2}{1+2}, \frac{1 \times(-1)+2 \times(-3)}{1+2}\right){/tex}
{tex}\Rightarrow \quad P=\left(\frac{4+4}{3}, \frac{-1-6}{3}\right) \Rightarrow P=\left(\frac{8}{3}, \frac{-7}{3}\right){/tex}
and B(x2, y2) = (4, -1)
For internally, {tex}Q=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right){/tex}
{tex}\Rightarrow \quad Q=\left(\frac{2 \times 4+1 \times 2}{2+1}, \frac{2 \times(-1)+1 \times(-3)}{2+1}\right){/tex}
{tex}\Rightarrow \quad Q=\left(\frac{8+2}{3}, \frac{-2-3}{3}\right) \Rightarrow Q=\left(\frac{10}{3}, \frac{-5}{3}\right){/tex}
0Thank You