No products in the cart.

The sum of first n terms …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

The sum of first n terms of 3 A.P. are S1 S2,S3 respectively. The first term of each A.P. is 1 and the common difference are 1,2,3 respectively prove that S1+S2=2S2.
  • 1 answers

Sia ? 6 years, 5 months ago

S1 = 1 + 2 + 3 + ....n
S2 = 1 + 3 + 5 + ...upto n terms
S3 = 1 + 4 + 7 + ...upto n terms
{tex}S _ { n} = \frac { n } { 2 } [ 2a + ( n - 1 ) d ]{/tex}
{tex}S _ { 1} = \frac { n } { 2} [ 2 (1) + ( n - 1 ) 1 ]{/tex}
{tex}S _ { 1} = \frac { n } { 2} [ 2 + n - 1 ]{/tex}
or, {tex}S _ { 1 } = \frac { n ( n + 1 ) } { 2 }{/tex}
Also, {tex}S _ { 2 } = \frac { n } { 2 } [ 2 \times 1 + ( n - 1 ) 2 ]{/tex}
{tex}S _ { 2 } = \frac { n } { 2 } [ 2 + 2n - 2 ]{/tex}
{tex}= \frac { n } { 2 } [ 2 n ] = n ^ { 2 }{/tex}
and {tex}S _ { 3 } = \frac { n } { 2 } [ 2 \times 1 + ( n - 1 ) 3 ]{/tex}
{tex}S _ { 3 } = \frac { n } { 2 } [ 2 + 3n - 3 ]{/tex}
{tex}= \frac { n ( 3 n - 1 ) } { 2 }{/tex}
Now, {tex}S _ { 1 } + S _ { 3 } = \frac { n ( n + 1 ) } { 2 } + \frac { n ( 3 n - 1 ) } { 2 }{/tex}
{tex}= \frac { n [ n + 1 + 3 n - 1 ] } { 2 }{/tex}
{tex}= \frac { n [ 4 n ] } { 2 }{/tex}
= 2n2 = 2S2
Hence Proved. 

https://examin8.com Test

Related Questions

Prove that root 8 is an irration number
  • 2 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
X-y=5
  • 1 answers
Venu Gopal has twice
  • 0 answers
(A + B )²
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App