The sum of first n terms …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Kanika . 1 month ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
S1 = 1 + 2 + 3 + ....n
S2 = 1 + 3 + 5 + ...upto n terms
S3 = 1 + 4 + 7 + ...upto n terms
{tex}S _ { n} = \frac { n } { 2 } [ 2a + ( n - 1 ) d ]{/tex}
{tex}S _ { 1} = \frac { n } { 2} [ 2 (1) + ( n - 1 ) 1 ]{/tex}
{tex}S _ { 1} = \frac { n } { 2} [ 2 + n - 1 ]{/tex}
or, {tex}S _ { 1 } = \frac { n ( n + 1 ) } { 2 }{/tex}
Also, {tex}S _ { 2 } = \frac { n } { 2 } [ 2 \times 1 + ( n - 1 ) 2 ]{/tex}
{tex}S _ { 2 } = \frac { n } { 2 } [ 2 + 2n - 2 ]{/tex}
{tex}= \frac { n } { 2 } [ 2 n ] = n ^ { 2 }{/tex}
and {tex}S _ { 3 } = \frac { n } { 2 } [ 2 \times 1 + ( n - 1 ) 3 ]{/tex}
{tex}S _ { 3 } = \frac { n } { 2 } [ 2 + 3n - 3 ]{/tex}
{tex}= \frac { n ( 3 n - 1 ) } { 2 }{/tex}
Now, {tex}S _ { 1 } + S _ { 3 } = \frac { n ( n + 1 ) } { 2 } + \frac { n ( 3 n - 1 ) } { 2 }{/tex}
{tex}= \frac { n [ n + 1 + 3 n - 1 ] } { 2 }{/tex}
{tex}= \frac { n [ 4 n ] } { 2 }{/tex}
= 2n2 = 2S2
Hence Proved.
0Thank You