No products in the cart.

Solve by cross multiplication method 1. …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Solve by cross multiplication method 1. x/a + y/b =a+b x/a2 + y/b2 =2
  • 1 answers

Sia ? 6 years, 5 months ago

The given equations are:
{tex}\frac{x}{a}{/tex} + {tex}\frac{y}{b}{/tex} {tex}=(a+b){/tex} {tex}\Rightarrow{/tex}{tex}bx + ay = ab(a + b){/tex}
{tex}\Rightarrow{/tex}{tex}bx + ay - ab(a + b) = 0{/tex} ....(i)
and {tex}\frac { x } { a ^ { 2 } } + \frac { y } { b ^ { 2 } } = 2{/tex} {tex}\Rightarrow{/tex} {tex}b^2x + a^2y = 2a^2b^2{/tex} 
{tex}\Rightarrow{/tex}{tex} b^2x + a^2y -2a^2b^2 = 0{/tex}....(ii)
From eq. (i) and (ii), we get

{tex}\Rightarrow{/tex} {tex}\frac { x } { - 2 a ^ { 3 } b ^ { 2 } + a ^ { 3 } b ( a + b ) }{/tex} = {tex}\frac { - y } { - 2 a ^ { 2 } b ^ { 3 } + a b ^ { 3 } ( a + b ) }{/tex} = {tex}\frac { 1 } { a ^ { 2 } b - a b ^ { 2 } }{/tex}
{tex}\Rightarrow{/tex}{tex}\frac { x } { - a ^ { 3 } b ( 2 b - a - b ) }{/tex} = {tex}\frac { - y } { - a b ^ { 3 } ( 2 a - a - b ) }{/tex} = {tex}\frac { 1 } { a b ( a - b ) }{/tex}
{tex}\Rightarrow{/tex}{tex}\frac { x } { - a ^ { 3 } b ( b - a ) }{/tex} = {tex}\frac { y } { a b ^ { 3 } ( a - b ) }{/tex} = {tex}\frac { 1 } { a b ( a - b ) }{/tex}
{tex}\Rightarrow{/tex} {tex}x = \frac { a ^ { 3 } b ( a - b ) } { a b ( a - b ) }{/tex} = a2;  {tex}y = \frac { a b ^ { 3 } ( a - b ) } { a b ( a - b ) } = b ^ { 2 }{/tex}
The solution is {tex}x = a^2, y = b^2{/tex} .

https://examin8.com Test

Related Questions

Prove that root 8 is an irration number
  • 2 answers
X-y=5
  • 1 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
(A + B )²
  • 1 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Venu Gopal has twice
  • 0 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App