No products in the cart.

Prove that the areas of two …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Prove that the areas of two similar triangles are in ratio of square of their corresponding altitude.
  • 2 answers

Sia ? 6 years, 5 months ago


Given: {tex}\triangle {/tex} ABC {tex} \sim {/tex}{tex}\triangle {/tex}DEF
AM
{tex} \bot {/tex} BC and DN {tex} \bot {/tex} EF
To prove:{tex}\frac{{area\vartriangle ABC}}{{area\vartriangle DEF}} = \frac{{A{M^2}}}{{D{N^2}}}{/tex}
proof::{tex}\frac{{area\vartriangle ABC}}{{area\vartriangle DEF}} = \frac{{A{B^2}}}{{D{E^2}}}{/tex}................[Area theorem]
In {tex}\triangle {/tex} ABM and DEN 
{tex}\angle{/tex} ABM and {tex}\angle{/tex} DEN [ {tex}\triangle {/tex} ABC {tex} \sim {/tex} {tex}\triangle {/tex}DEF]
{tex}\angle{/tex}AMB = {tex}\angle{/tex}DNE [90o each]
{tex}\Rightarrow {/tex} {tex}\triangle {/tex}ABM {tex} \sim {/tex}{tex}\triangle {/tex}DEN [AA similarity]
{tex}\therefore {/tex} {tex}\frac{{AB}}{{DE}} = \frac{{AM}}{{DN}}{/tex}
{tex}\Rightarrow {/tex} {tex}\frac{{A{B^2}}}{{D{E^2}}} = \frac{{A{M^2}}}{{D{N^2}}}{/tex}  .....(ii)
From (i) and (ii) we get

{tex}\frac{{area\vartriangle ABC}}{{area\vartriangle DEF}} = \frac{{A{M^2}}}{{D{N^2}}}{/tex}.

Baby Sahoo 6 years, 5 months ago

I can't understand
https://examin8.com Test

Related Questions

X-y=5
  • 1 answers
Venu Gopal has twice
  • 0 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
Prove that root 8 is an irration number
  • 2 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
(A + B )²
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App