No products in the cart.

Find the centre of a circle …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Find the centre of a circle passsing through a point (6,_6),(3,-7),(3,3)
  • 1 answers

Sia ? 6 years, 5 months ago

Let A → (6, –6), B → (3, –7) and C → (3, 3).
Let the centre of the circle be I(x, y)
Then, IA = IB = IC [By definition of a circle]
{tex}\Rightarrow{/tex} IA2 = IB2 = IC2
{tex}\Rightarrow{/tex} (x - 6)2 + (y + 6)2 = (x - 3)2 + (y + 7)2 = (x - 3)2 + (y - 3)2
Taking first two, we get
(x - 6)2 + (y + 6)2 = (x - 3)2 + (y + 7)2
{tex}\Rightarrow{/tex} x2 - 12x + 36 + y2 + 12y + 36  = x2 - 6x + 9 + y2 + 14y + 49
{tex}\Rightarrow{/tex} 6x + 2y = 14
{tex}\Rightarrow{/tex} 3x + y = 7 ......(1) ....[Dividing throughout by 2]
Taking last two, we get
(x - 3)2 + (y + 7)2 = (x - 3)2 + (y - 3)2
{tex}\Rightarrow{/tex} (y + 7)2 = (y - 3)2
{tex}\Rightarrow{/tex} (y + 7) = {tex}\pm{/tex}(y-3)
taking +e sign, we get
y + 7 = y - 3
{tex}\Rightarrow{/tex} 7 = -3
which is impossible
Taking -ve sign, we get
y + 7 = -(y - 3)
{tex}\Rightarrow{/tex} y + 7 = -y + 3
{tex}\Rightarrow{/tex} 2y = -4
{tex}\Rightarrow y = \frac{{ - 4}}{2} = - 2{/tex}
Putting y = -2 in equation (1), we get
{tex}\Rightarrow{/tex} 3x - 2 = 7
{tex}\Rightarrow{/tex} 3x = 9
{tex}\Rightarrow{/tex} x = 3
Thus, I {tex}\rightarrow{/tex} (3, -2)
Hence, the centre of the circle is (3, -2).

https://examin8.com Test

Related Questions

Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
(A + B )²
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Venu Gopal has twice
  • 0 answers
X-y=5
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App