A spherical ball of radius 3cm …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Radius of the ball = {tex}\frac { 3 } { 2 } \mathrm { cm } = 1.5 \mathrm { cm }{/tex}
Volume of the bigger ball = {tex}\frac{4}{3}\pi {(1.5)^3}{\text{c}}{{\text{m}}^3} {/tex}...... (i)
Radii of two smaller balls are {tex}\frac { 1 } { 2 } \mathrm { cm } \text { and } \frac { 1.5 } { 2 } \mathrm { cm }{/tex}
{tex}\therefore {/tex} total volume of the two smaller balls
{tex}= \left[ \frac { 4 } { 3 } \pi ( 0.5 ) ^ { 3 } + \frac { 4 } { 3 } \pi ( 0.75 ) ^ { 3 } \right] \mathrm { cm } ^ { 3 }{/tex}
{tex}= \frac{4}{3}\pi \left[ {{{(0.5)}^3} + {{(0.75)}^3}} \right]{\text{c}}{{\text{m}}^3} {/tex}.......(ii)
Let the radius of the third ball be r cm.
{tex}\therefore {/tex} Volume of the third ball = {tex}\frac{4}{3}\pi {r^3}c{m^3}\, {/tex}......... (iii)
Since, the big spherical ball is melted to produce the three small spherical balls; the volume of the big spherical ball is same as the sum of the volumes of the three small spherical balls.
Therefore, we have
From (i), (ii) and (iii), we have
{tex}\frac { 4 } { 3 } \pi ( 1.5 ) ^ { 3 } = \frac { 4 } { 3 } \pi \left[ ( 0.5 ) ^ { 3 } + ( 0.75 ) ^ { 3 } \right] + \frac { 4 } { 3 } \pi r ^ { 3 } \Rightarrow ( 1.5 ) ^ { 3 } = ( 0.5 ) ^ { 3 } + ( 0.75 ) ^ { 3 } + r ^ { 3 }{/tex}
{tex}\Rightarrow r ^ { 3 } = ( 1.5 ) ^ { 3 } - ( 0.5 ) ^ { 3 } - ( 0.75 ) ^ { 3 } = r ^ { 3 } = 3.375 - 0.125 - 0.421875{/tex}
{tex}\Rightarrow r ^ { 3 } = 2.828125 \Rightarrow r = 1.41{/tex}
{tex}\therefore {/tex} radius of the third ball = 1.41 cm
0Thank You