We have,
f(x) = abx2 + (b2 - ac)x - bc
= abx2 + b2x - acx - bc
= bx(ax + b ) - c(ax + b)
= (ax + b) (bx - c)
Now r(x)=0 if
ax+b=0 or bx-c=0
{tex}\style{font-family:Arial}{\begin{array}{l}\style{font-size:12px}{\mathrm i}\style{font-size:12px}.\style{font-size:12px}{\mathrm e}\style{font-size:12px}.\style{font-size:12px}\;\style{font-size:12px}{\mathrm x}\style{font-size:12px}=\style{font-size:12px}-\frac{\style{font-size:12px}{\mathrm b}}{\style{font-size:12px}{\mathrm a}}\style{font-size:12px}\;\style{font-size:12px}{\mathrm{or}}\style{font-size:12px}\;\style{font-size:12px}{\mathrm x}\style{font-size:12px}=\frac{\style{font-size:12px}{\mathrm c}}{\style{font-size:12px}{\mathrm b}}\\\end{array}}{/tex}
Thus, the zeroes of f(x) are :
{tex}\style{font-family:Arial}{\style{font-size:12px}{\mathrm\alpha}\style{font-size:12px}=\style{font-size:12px}-\frac{\style{font-size:12px}{\mathrm b}}{\style{font-size:12px}{\mathrm a}}\style{font-size:12px}\;\style{font-size:12px}{\mathrm{and}}\style{font-size:12px}\;\style{font-size:12px}{\mathrm\beta}\style{font-size:12px}=\frac{\style{font-size:12px}{\mathrm c}}{\style{font-size:12px}{\mathrm b}}}{/tex}
{tex}\text{α+β=-}\frac{\mathrm b}{\mathrm a}\;+\frac{\mathrm c}{\mathrm b}=\frac{-\mathrm b^2+ac}{ab}=-\frac{\mathrm( b^2-ac)}{ab}--(1){/tex}
{tex}\text{αβ=}\frac{\mathrm b}{\mathrm a}\;\times-\frac{\mathrm c}{\mathrm b}=-\frac{\mathrm c}{\mathrm a}----(2){/tex}
Now for f(x) = abx2 + (b2 - ac)x - bc
A = ab , B= b2 - ac, C = -b
{tex}-\frac BA=-\frac{b^2-ac}{ab}--(3){/tex}
{tex}\frac CA=\frac{-bc}{ab}=-\frac ca----(4){/tex}
From (1) & (3) and (2) & (4) we conclude:
{tex}\begin{array}{l}\text{α+β=-}\frac{\mathrm B}{\mathrm A}\\\end{array}{/tex}
{tex}\begin{array}{l}\text{αβ=}\frac C{\mathrm A}\\\end{array}{/tex}
Sia ? 6 years, 6 months ago
We have,
f(x) = abx2 + (b2 - ac)x - bc
= abx2 + b2x - acx - bc
= bx(ax + b ) - c(ax + b)
= (ax + b) (bx - c)
Now r(x)=0 if
ax+b=0 or bx-c=0
{tex}\style{font-family:Arial}{\begin{array}{l}\style{font-size:12px}{\mathrm i}\style{font-size:12px}.\style{font-size:12px}{\mathrm e}\style{font-size:12px}.\style{font-size:12px}\;\style{font-size:12px}{\mathrm x}\style{font-size:12px}=\style{font-size:12px}-\frac{\style{font-size:12px}{\mathrm b}}{\style{font-size:12px}{\mathrm a}}\style{font-size:12px}\;\style{font-size:12px}{\mathrm{or}}\style{font-size:12px}\;\style{font-size:12px}{\mathrm x}\style{font-size:12px}=\frac{\style{font-size:12px}{\mathrm c}}{\style{font-size:12px}{\mathrm b}}\\\end{array}}{/tex}
Thus, the zeroes of f(x) are :
{tex}\style{font-family:Arial}{\style{font-size:12px}{\mathrm\alpha}\style{font-size:12px}=\style{font-size:12px}-\frac{\style{font-size:12px}{\mathrm b}}{\style{font-size:12px}{\mathrm a}}\style{font-size:12px}\;\style{font-size:12px}{\mathrm{and}}\style{font-size:12px}\;\style{font-size:12px}{\mathrm\beta}\style{font-size:12px}=\frac{\style{font-size:12px}{\mathrm c}}{\style{font-size:12px}{\mathrm b}}}{/tex}
{tex}\text{α+β=-}\frac{\mathrm b}{\mathrm a}\;+\frac{\mathrm c}{\mathrm b}=\frac{-\mathrm b^2+ac}{ab}=-\frac{\mathrm( b^2-ac)}{ab}--(1){/tex}
{tex}\text{αβ=}\frac{\mathrm b}{\mathrm a}\;\times-\frac{\mathrm c}{\mathrm b}=-\frac{\mathrm c}{\mathrm a}----(2){/tex}
Now for f(x) = abx2 + (b2 - ac)x - bc
A = ab , B= b2 - ac, C = -b
{tex}-\frac BA=-\frac{b^2-ac}{ab}--(3){/tex}
{tex}\frac CA=\frac{-bc}{ab}=-\frac ca----(4){/tex}
From (1) & (3) and (2) & (4) we conclude:
{tex}\begin{array}{l}\text{α+β=-}\frac{\mathrm B}{\mathrm A}\\\end{array}{/tex}
{tex}\begin{array}{l}\text{αβ=}\frac C{\mathrm A}\\\end{array}{/tex}
0Thank You