If alpha and beta are the …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Kanika . 2 months ago
- 1 answers
Posted by Hari Anand 7 months, 1 week ago
- 0 answers
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Parinith Gowda Ms 4 months, 2 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 4 months, 2 weeks ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 7 months ago
{tex}\alpha \ and\ \beta{/tex} are the roots of the polynomial, p(y) = 25p2 - 15p + 2
a = 25, b= -15, c= 2
{tex} \alpha + \beta =-\frac{b}{a}= - \left( - \frac { 15 } {25 } \right) = \frac 35{/tex}
and {tex}\alpha \beta = \frac{c}{a} = \frac { 2 } { 25 }{/tex}
Now, {tex}\frac { 1 } { \alpha } + \frac { 1 } { \beta } = \frac { \alpha + \beta } { \alpha \beta } = \frac { 3 / 5 } { 2 /25 } = \frac { 15 } { 2 }{/tex}
and {tex}\frac { 1 } { \alpha } \times \frac { 1 } { \beta } = \frac { 1 } { \alpha \beta } = \frac { 1 } { 2 / 25 } = \frac{25}{2}{/tex}.
The equation of polynomial which has {tex}\frac{1}{\alpha} \ and \ \frac{1}{\beta}{/tex}as roots is {tex}y ^ { 2 } - \frac { 15 } {2 } y + \frac{25}{2} {/tex}
1Thank You