By elimination method 3x-y+7/11+2=10 2y+x+11/7=10

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Aniketa Kumari 6 years, 5 months ago
- 1 answers
Related Questions
Posted by Sabin Sultana 1 year, 3 months ago
- 0 answers
Posted by Ashish Chaudhary 1 year, 3 months ago
- 1 answers
Posted by Gurleen Kaur 1 year, 3 months ago
- 0 answers
Posted by Sana Dharwad 1 year, 3 months ago
- 0 answers
Posted by Nitin Kumar 1 year, 2 months ago
- 1 answers
Posted by Sethpoulou Apoulou 1 year, 3 months ago
- 0 answers
Posted by Ananya Sv 1 year, 3 months ago
- 1 answers
Posted by Manoj Thakur 1 year, 3 months ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 5 months ago
The given system of equations is
{tex}3x - \frac{{y + 7}}{{11}} + 2 = 10{/tex} ...(i)
{tex}2y + \frac{{x - 11}}{7} = 10{/tex} ....(ii)
From (i), we get
{tex}\frac{{33x - y - 7 + 22}}{{11}} = 10{/tex}
{tex}\Rightarrow{/tex} {tex}33x - y + 15 = 10 × 11{/tex}
{tex}\Rightarrow{/tex} {tex}33x + 15 - 110 = y{/tex}
{tex}\Rightarrow{/tex} {tex}y = 33x - 95{/tex}
From (ii), we get
{tex}\frac{{14y + x + 11}}{7} = 10{/tex}
{tex}\Rightarrow{/tex} {tex}14y + x + 11 = 10 × 7{/tex}
{tex}\Rightarrow{/tex} {tex}14y + x + 11 = 70{/tex}
{tex}\Rightarrow{/tex} {tex}14y + x = 70 - 11{/tex}
{tex}\Rightarrow{/tex} {tex}14y + x = 59{/tex} ....(iii)
Substituting y = 33x - 95 in (iii), we get
14(33x - 95) + x = 59
{tex}\Rightarrow{/tex} 462x - 1330 + x = 59
{tex}\Rightarrow{/tex} 463x = 59 + 1330
{tex}\Rightarrow{/tex} 463x = 1389
{tex}\Rightarrow x = \frac{{1389}}{{463}} = 3{/tex}
Putting x = 3, in y = 33x - 95, we get
y = 33 {tex}\times{/tex} 3 - 95
{tex}\Rightarrow{/tex} y = 99 - 95 = 4
{tex}\Rightarrow{/tex} y = 4
Hence, Solution of the given system of equation is x = 3, y = 4.
0Thank You