In triangle DEllBC, AD=1cm and BD

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Sidhant Baral 6 years, 7 months ago
- 1 answers
Related Questions
Posted by Kanika . 2 months ago
- 1 answers
Posted by Parinith Gowda Ms 4 months, 2 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 4 months, 2 weeks ago
- 1 answers
Posted by Hari Anand 7 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 7 months ago
It is given that AD = 1 cm,
BD = 2 cm and {tex}D E \| B C{/tex}
In {tex}\triangle{/tex}ADE and {tex}\triangle {/tex}ABC
{tex}\angle A D E = \angle A B C{/tex} (Corresponding angles)
{tex}\angle A = \angle A{/tex} [Common]
Therefore, by A.A. similar condition
{tex}\triangle \mathrm { ADE } \sim \triangle \mathrm { ABC }{/tex}
Ratio of areas of similar triangles is equal to the square of the ratio of the corresponding sides.
{tex}\therefore \quad \frac { \operatorname { ar } ( \triangle \mathrm { ABC } ) } { \operatorname { ar } ( \triangle \mathrm { ADE } ) } = \frac { \mathrm { AB } ^ { 2 } } { \mathrm { AD } ^ { 2 } }{/tex}
{tex}\Rightarrow \quad \frac { \operatorname { ar } ( \triangle A B C ) } { \operatorname { ar } ( \triangle A D E ) } = \left( \frac { 3 } { 1 } \right) ^ { 2 }{/tex}
{tex}\Rightarrow \quad \frac { \operatorname { arc } \triangle A B C ) } { \operatorname { ar } ( \triangle A D E ) }{/tex}
{tex}= \frac { 9 } { 1 }{/tex}
0Thank You