No products in the cart.

Find all the zeros of the …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Find all the zeros of the polynomial 2x^4-3x^3-5x^2+9x-3, it being given that two of its zeros are √3 and -√3
  • 1 answers

Sia ? 6 years, 7 months ago

Given polynomial is p(x)  = 2x4 - 3x3 - 5x2 + 9x - 3
{tex}\sqrt { 3 } {/tex} and {tex}- \sqrt { 3 }{/tex} are the zeros of polynomial.
 (x - {tex}\sqrt{3}{/tex})(x + {tex}\sqrt{3}{/tex}) = x2 - 3 will divide the given polynomial completely
Dividing 2x4 - 3x3 - 5x2 + 9x - 3 by x2 - 3, we get

{tex}\therefore{/tex} Quotient q(x) = 2x2 - 3x + 1
= 2x2 - 2x - x + 1
= 2x(x - 1) - 1(x - 1)
q(x) = (x - 1) (2x - 1)
Other zeros of given polynomial are given by
q(x) = 0
 {tex}\Rightarrow{/tex} (x - 1) (2x - 1) = 0
{tex}\Rightarrow{/tex} x - 1= 0 or 2x - 1 = 0
{tex}\Rightarrow{/tex} x = 1 or 2x = -1
{tex}\Rightarrow{/tex} x = 1 or x = {tex}\frac{1}{2}{/tex}
 {tex}\therefore{/tex} x = 1, {tex}\frac{1}{2}{/tex}
Hence, zeros of given polynomial are {tex}\sqrt { 3 } , - \sqrt { 3 }{/tex}, 1 , {tex}\frac{1}{2}{/tex}.

https://examin8.com Test

Related Questions

sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Prove that root 8 is an irration number
  • 2 answers
Venu Gopal has twice
  • 0 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
(A + B )²
  • 1 answers
X-y=5
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App