Sec(6) theetha=tan(6)thetha+ 3tan(2)thetha(sec(2)thetha+1

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Varun Gupta 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Kanika . 2 months ago
- 1 answers
Posted by Parinith Gowda Ms 4 months, 2 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Hari Anand 7 months ago
- 0 answers
Posted by Parinith Gowda Ms 4 months, 2 weeks ago
- 0 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
We have to prove that :-
{tex} \Rightarrow {\sec ^6}\theta = {\tan ^6}\theta +3{\tan ^2}\theta {\sec ^2}\theta + 1{/tex}
{tex} \Rightarrow {\sec ^6}\theta - {\tan ^6}\theta = 3{\tan ^2}\theta {\sec ^2}\theta + 1{/tex}
Now, LHS
{tex} = {\sec ^6}\theta - {\tan ^6}\theta {/tex}
{tex} = {\left( {{{\sec }^2}\theta } \right)^3} - {({\tan ^2}\theta )^3}{/tex}
{tex}= \left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)\left[ {{{({{\sec }^2}\theta )}^2} + {{\sec }^2}\theta {{\tan }^2}\theta + {{({{\tan }^2}\theta )}^2}} \right]{/tex}{Since, a3 - b3 = (a - b )(a2 - ab + b2 )}
{tex} = 1\left[ {{{\sec }^4}\theta + {{\sec }^2}\theta {{\tan }^2}\theta + {{\tan }^4}\theta } \right]{/tex} {tex}\left[ {\because {{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right]{/tex}
{tex} = {\sec ^4}\theta + {\tan ^4}\theta + {\sec ^2}\theta {\tan ^2}\theta {/tex}
{tex} = {({\sec ^2}\theta )^2} + {({\tan ^2}\theta )^2} + {\sec ^2}\theta {\tan ^2}\theta {/tex}
Adding and subtracting {tex}2{\sec ^2}\theta {\tan ^2}\theta {/tex}
{tex} = {({\sec ^2}\theta )^2} + {({\tan ^2}\theta )^2} - 2{\sec ^2}\theta {\tan ^2}\theta + 2{\sec ^2}\theta {\tan^2}\theta+ {\sec ^2}\theta {\tan ^2}\theta {/tex}
{tex} = {({\sec ^2}\theta - {\tan ^2}\theta )^2} + 3{\sec ^2}\theta {\tan ^2}\theta {/tex} {tex}\left[ {\because {{(a - b)}^2} = {a^2} + {b^2} - 2ab} \right]{/tex}
{tex} = 1 + 3{\sec ^2}\theta {\tan ^2}\theta {/tex} {tex}\left[ {\because {{\sec }^2}\theta - {{\tan }^2}\theta = 1} \right]{/tex}
= RHS
Hence proved
0Thank You