If alpha and beta are the …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Hari Anand 7 months ago
- 0 answers
Posted by Parinith Gowda Ms 4 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Kanika . 2 months ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Parinith Gowda Ms 4 months, 2 weeks ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 7 months ago
The given quadratic polynomial is 2x2 + 5x + k.
If {tex}\alpha, \beta{/tex} are zeroes of quadratic polynomial
{tex}\alpha + \beta= \frac { - b } { a } = \frac { - 5 } { 2 } {/tex}
{tex} \alpha \beta= \frac { c } { a } = \frac { k } { 2 }{/tex}
Putting these values in {tex}( \alpha + \beta ) ^ { 2 } - \alpha \beta{/tex} = 24,
we get {tex}\left( \frac { - 5 } { 2 } \right) ^ { 2 } - \frac { k } { 2 } = 24 {/tex}
{tex}\Rightarrow \frac { 25 } { 4 } - \frac { k } { 2 } = 24{/tex}
{tex}\Rightarrow\frac { - k } { 2 } = 24 - \frac { 25 } { 4 }{/tex}
{tex}\Rightarrow \frac { - k } { 2 } = \frac { 96 - 25 } { 4 }{/tex}
{tex}\Rightarrow k = \frac { - 71 } { 4 } \times 2 = \frac { - 71 } { 2 }{/tex}
0Thank You