If son theta =a²-b²/a²+b², find the …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Chotu Kumar 6 years, 7 months ago
- 1 answers
Related Questions
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Parinith Gowda Ms 4 months, 2 weeks ago
- 0 answers
Posted by Kanika . 1 month, 4 weeks ago
- 1 answers
Posted by Hari Anand 7 months ago
- 0 answers
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers
Posted by Parinith Gowda Ms 4 months, 2 weeks ago
- 1 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 7 months ago
We have,
{tex}\sin \theta = \frac { \text { Perpendicular } } { \text { Hypotenuse } } = \frac { a ^ { 2 } - b ^ { 2 } } { a ^ { 2 } + b ^ { 2 } }{/tex}
So, Let us draw a right triangle ABC in which {tex}\angle B{/tex} is right angle, we have
Perpendicular = BC = a2 - b2 Hypotenuse = AC = a2 + b2 and, {tex}\angle B A C = \theta{/tex}
By Pythagoras theorem, we have
AC2 = AB2 + BC2
{tex}\Rightarrow \quad \left( a ^ { 2 } + b ^ { 2 } \right) ^ { 2 } = A B ^ { 2 } + \left( a ^ { 2 } - b ^ { 2 } \right) ^ { 2 }{/tex}
{tex}\Rightarrow \quad A B ^ { 2 } = \left( a ^ { 2 } + b ^ { 2 } \right) ^ { 2 } - \left( a ^ { 2 } - b ^ { 2 } \right) ^ { 2 }{/tex}
{tex}\Rightarrow \quad A B ^ { 2 } = \left( a ^ { 4 } + b ^ { 4 } + 2 a ^ { 2 } b ^ { 2 } \right) - \left( a ^ { 4 } + b ^ { 4 } - 2 a ^ { 2 } b ^ { 2 } \right){/tex}
{tex}\Rightarrow \quad A B ^ { 2 } = 4 a ^ { 2 } b ^ { 2 } = ( 2 a b ) ^ { 2 }{/tex}
{tex}\Rightarrow \quad A B = 2 a b{/tex}
Now, Let{tex}\angle B A C = \theta{/tex}
We have
Base = AB = 2ab, Perpendicular {tex}= \mathrm { BC } = a ^ { 2 } - b ^ { 2 }{/tex}, Hypotenuse = AC = a2 + b2
Therefore, {tex}\quad \cos \theta = \frac { \text { Base } } { \text { Hypotenuse } } = \frac { 2 a b } { a ^ { 2 } + b ^ { 2 } }{/tex}, {tex}\tan \theta = \frac { \text { Perpendicular } } { \text { Base } } = \frac { a ^ { 2 } - b ^ { 2 } } { 2 a b }{/tex}
{tex}\quad cosec \;\theta = \frac { \text { Hypotenuse } } { \text { Perpendicular } } = \frac { a ^ { 2 } + b ^ { 2 } } { a ^ { 2 } - b ^ { 2 } } , \quad \sec \theta = \frac { \text { Hypotenuse } } { \text { Base } } = \frac { a ^ { 2 } + b ^ { 2 } } { 2 a b }{/tex}
and, {tex}\cot \theta = \frac { \text { Base } } { \text { Perpendicular } } = \frac { 2 a b } { a ^ { 2 } - b ^ { 2 } }{/tex}
0Thank You