IN AN AP. GIVEN d=5,s9=75 find …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Suneet Suneet 6 years, 6 months ago
- 1 answers
Related Questions
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Kanika . 1 month ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 6 months ago
Here, d = 5
S9 = 75
We know that
{tex}{S_n} = \frac{n}{2}\left[ {2a + (n - 1)d} \right]{/tex}
{tex} \Rightarrow {S_9} = \frac{9}{2}\left[ {2a + (9 - 1)d} \right]{/tex}
{tex} \Rightarrow {S_9} = \frac{9}{2}\left[ {2a + 8d} \right]{/tex}
{tex} \Rightarrow {S_9} = 9\left[ {a + 4d} \right]{/tex}
{tex} \Rightarrow {S_9} = 9\left[ {a + 4 \times 5} \right]{/tex}
{tex} \Rightarrow {/tex} S9 = 9[a + 20]
{tex} \Rightarrow {/tex} 75 = 9a + 180
{tex} \Rightarrow {/tex} 9a = 75 - 180
{tex} \Rightarrow {/tex} 9a = -105
{tex} \Rightarrow a = - \frac{{105}}{9}{/tex}
{tex} \Rightarrow a = - \frac{{35}}{3}{/tex}
Again, we know that
an = a + (n - 1)d
{tex} \Rightarrow {/tex} a9 = a + (9 - 1)d
{tex} \Rightarrow {/tex} a9 = a + 8d
{tex} \Rightarrow {a_9} = - \frac{{35}}{3} + 8(5){/tex}
{tex} \Rightarrow {a_9} = - \frac{{35}}{3} + 40{/tex}
{tex} \Rightarrow {a_9} = \frac{{ - 35 + 120}}{3}{/tex}
{tex} \Rightarrow {a_9} = \frac{{85}}{3}{/tex}
0Thank You