Here i brought u challenging question …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Varshini Bhushan 6 years, 7 months ago
- 1 answers
Related Questions
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers
Posted by Kanika . 1 month, 4 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 4 months, 1 week ago
- 0 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Hari Anand 7 months ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Parinith Gowda Ms 4 months, 1 week ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 7 months ago
Let a be the first term and d be the common difference of the given AP. Then,
Sm = n {tex}\Rightarrow{/tex} {tex}\frac{m}{2}{/tex}[2a + (m-1)d] = n
{tex}\Rightarrow{/tex} 2am + m(m- 1)d - 2n ...... (i)
And, Sn = m {tex}\Rightarrow{/tex}{tex}\frac{n}{2}{/tex}[2a + (n - 1)d] = m
{tex}\Rightarrow{/tex} 2an + n(n - 1)d = 2m ...... (ii)
On subtracting (ii) from (i), we get
2a(m-n) + [(m2 - n2) - (m - n)]d = 2(n - m)
{tex}\Rightarrow{/tex} (m - n)[2a + (m + n - 1)d] = 2(n - m)
{tex}\Rightarrow{/tex} 2a + (m + n- 1)d = -2 ..... (iii)
Sum of the first (m + n) terms of the given AP
= {tex}\frac{{(m + n)}}{2}{/tex}{tex}\cdot{/tex}{2a + (m + n - 1)d}
{tex}= \frac { ( m + n ) } { 2 } \cdot ( - 2 ) = - ( m + n ){/tex} [using (iii)].
Hence, the sum of first (m + n) terms of the given AP is -(m + n).
0Thank You