the sum of the first seven …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 4 months, 1 week ago
- 1 answers
Posted by Hari Anand 7 months ago
- 0 answers
Posted by Kanika . 1 month, 4 weeks ago
- 1 answers
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Parinith Gowda Ms 4 months, 1 week ago
- 0 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 7 months ago
Let a be the first term and d be the common difference of the given AP.
Now a4=a+(4-1)d
{tex}\implies{/tex}a4=a+3d.
And, a17=a+(17-1)d
{tex}\implies{/tex}a17= a+16d.
Then,
T4=a+3d and T17= a+16d
Now, {tex}\frac { T _ { 4 } } { T _ { 17 } } = \frac { 1 } { 5 }{/tex}
{tex}\Rightarrow \frac { a + 3 d } { a + 16 d } = \frac { 1 } { 5 }{/tex}
{tex}\Rightarrow{/tex} 5a+15d=a+16d
{tex}\implies{/tex}5a-a+15d-16d=0
{tex}\Rightarrow{/tex} 4a-d=0
{tex}\Rightarrow{/tex} 4a=d....(i)
Also, S7=182
Where ,S7={tex}\frac {7}2 [{2a+(7-1)d}]{/tex}
{tex}\Rightarrow \frac { 7 } { 2 } [ 2 a + 6 d ] = 182{/tex}
{tex}\Rightarrow \frac { 7 \times 2 } { 2 } [ a + 3 d ] = 182{/tex}
{tex}\Rightarrow{/tex} a+3d=26
{tex}\Rightarrow{/tex} a+3(4a)=26...[from (i)]
{tex}\Rightarrow{/tex} 13a=26
{tex}\Rightarrow{/tex} a=2
{tex}\Rightarrow{/tex} d=4(2)=8
Thus, We have
T1 = 2
T2 = T1 + d = 2 + 8 = 10
T3 = T1 + 2d = 2 + 2(8) = 2 + 16 = 18
T4 = T1 + 3d = 2 + 3(8) = 2 + 24 = 26
Thus, the given AP is 2,10,18,26,...
0Thank You