If tan theta + sin theta=m, …
CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Chandan Pradhan 8 years, 3 months ago
- 1 answers
Related Questions
Posted by Hari Anand 2 months, 4 weeks ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 1 month ago
- 2 answers
Posted by Kanika . 4 weeks ago
- 1 answers
Posted by Parinith Gowda Ms 5 days, 19 hours ago
- 1 answers
Posted by Parinith Gowda Ms 5 days, 19 hours ago
- 0 answers
Posted by Sahil Sahil 1 year, 1 month ago
- 2 answers
Posted by Lakshay Kumar 9 months, 2 weeks ago
- 0 answers
myCBSEguide
Trusted by 1 Crore+ Students
Test Generator
Create papers online. It's FREE.
CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
Rashmi Bajpayee 8 years, 3 months ago
L.H.S. {tex}{m^2} - {n^2}{/tex} = {tex}{\left( {\tan \theta + \sin \theta } \right)^2} - {\left( {\tan \theta - \sin \theta } \right)^2}{/tex}
= {tex}\left( {\tan \theta + \sin \theta + \tan \theta - \sin \theta } \right)\left( {\tan \theta + \sin \theta - \tan \theta + \sin \theta } \right){/tex} [Since {tex}{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right){/tex}]
= {tex}\left( {2\tan \theta } \right)\left( {2\sin \theta } \right){/tex}
= {tex}4 \times {{\sin \theta } \over {\cos \theta }} \times \sin \theta {/tex}
= {tex}{{4{{\sin }^2}\theta } \over {\cos \theta }}{/tex}
R.H.S. {tex}4\sqrt {mn} {/tex} = {tex}4\sqrt {\left( {\tan \theta + \sin \theta } \right)\left( {\tan \theta - \sin \theta } \right)} {/tex}
= {tex}4\sqrt {{{\tan }^2}\theta - {{\sin }^2}\theta } {/tex} [Since {tex}{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right){/tex}]
= {tex}4\sqrt {{{{{\sin }^2}\theta } \over {{{\cos }^2}\theta }} - {{\sin }^2}\theta } {/tex}
= {tex}4\sqrt {{{{{\sin }^2}\theta - {{\sin }^2}\theta .{{\cos }^2}\theta } \over {{{\cos }^2}\theta }}} {/tex}
= {tex}4\sqrt {{{{{\sin }^2}\theta \left( {1 - {{\cos }^2}\theta } \right)} \over {{{\cos }^2}\theta }}} {/tex}
= {tex}4\sqrt {{{{{\sin }^2}\theta .{{\sin }^2}\theta } \over {{{\cos }^2}\theta }}} {/tex}
= {tex}{{4{{\sin }^2}\theta } \over {\cos \theta }}{/tex}
L.H.S. = R.H.S.
1Thank You