Find the zeroes of the quadratic …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Related Questions
Posted by Parinith Gowda Ms 4 months, 1 week ago
- 0 answers
Posted by Vanshika Bhatnagar 1 year, 5 months ago
- 2 answers
Posted by Lakshay Kumar 1 year, 1 month ago
- 0 answers
Posted by Hari Anand 7 months ago
- 0 answers
Posted by Kanika . 1 month, 4 weeks ago
- 1 answers
Posted by Sahil Sahil 1 year, 5 months ago
- 2 answers
Posted by Parinith Gowda Ms 4 months, 1 week ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 4 months ago
x2 - 6
Let p(x) = x2 - 6
For zeroes of p(x), p(x) = 0
{tex}\Rightarrow x ^ { 2 } - 6 = 0 \Rightarrow ( x ) ^ { 2 } - ( \sqrt { 6 } ) ^ { 2 } = 0{/tex}
{tex}\Rightarrow ( x - \sqrt { 6 } ) ( x + \sqrt { 6 } ) = 0{/tex}
Using the identity a2 - b2 = (a - b) (a + b)
{tex}\Rightarrow x - \sqrt { 6 } = 0 \text { or } x + \sqrt { 6 } = 0{/tex}
{tex}\Rightarrow x = \sqrt { 6 } \text { or } x = - \sqrt { 6 } \Rightarrow x = \sqrt { 6 } , - \sqrt { 6 }{/tex}
So, the zeroes of x2 - 6 are {tex}\sqrt 6 {/tex} and {tex} - \sqrt 6 {/tex}
Sum of zeroes
{tex}= ( \sqrt { 6 } ) + ( - \sqrt { 6 } ) = 0 = \frac { - 0 } { 1 } = \frac { - \text { Coefficient of } x } { \text { Coefficient of } x ^ { 2 } }{/tex}
Product of zeroes
{tex}= ( \sqrt { 6 } ) \times ( - \sqrt { 6 } ) = - 6 = \frac { - 6 } { 1 } = \frac { \text { Constant term } } { \text { Coefficient of } \mathrm { x } ^ { 2 } }{/tex}
Hence the relation between zeroes and coefficient is verified.
0Thank You