No products in the cart.

Find the zeroes of the quadratic …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Find the zeroes of the quadratic polynomials and verify the relayion between the zeroes and cofficent
  • 1 answers

Sia ? 6 years, 4 months ago

x2 - 6
Let p(x) = x2 - 6
For zeroes of p(x), p(x) = 0
{tex}\Rightarrow x ^ { 2 } - 6 = 0 \Rightarrow ( x ) ^ { 2 } - ( \sqrt { 6 } ) ^ { 2 } = 0{/tex}
{tex}\Rightarrow ( x - \sqrt { 6 } ) ( x + \sqrt { 6 } ) = 0{/tex}
Using the identity a2 - b2 = (a - b) (a + b)
{tex}\Rightarrow x - \sqrt { 6 } = 0 \text { or } x + \sqrt { 6 } = 0{/tex}
{tex}\Rightarrow x = \sqrt { 6 } \text { or } x = - \sqrt { 6 } \Rightarrow x = \sqrt { 6 } , - \sqrt { 6 }{/tex}
So, the zeroes of x2 - 6 are {tex}\sqrt 6 {/tex} and {tex} - \sqrt 6 {/tex}
Sum of zeroes
{tex}= ( \sqrt { 6 } ) + ( - \sqrt { 6 } ) = 0 = \frac { - 0 } { 1 } = \frac { - \text { Coefficient of } x } { \text { Coefficient of } x ^ { 2 } }{/tex}
Product of zeroes
{tex}= ( \sqrt { 6 } ) \times ( - \sqrt { 6 } ) = - 6 = \frac { - 6 } { 1 } = \frac { \text { Constant term } } { \text { Coefficient of } \mathrm { x } ^ { 2 } }{/tex}

Hence the relation between zeroes and coefficient is verified.

https://examin8.com Test

Related Questions

Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Venu Gopal has twice
  • 0 answers
(A + B )²
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers
X-y=5
  • 1 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App