No products in the cart.

Zeros of quadratic polynomial f(x)=6x-3,verify relationship …

CBSE, JEE, NEET, CUET

CBSE, JEE, NEET, CUET

Question Bank, Mock Tests, Exam Papers

NCERT Solutions, Sample Papers, Notes, Videos

Zeros of quadratic polynomial f(x)=6x-3,verify relationship between zeros and coefficients
  • 1 answers

Sia ? 6 years, 3 months ago

f(x)=6x2-3
To find zeros
6x2-3=0
6x2=3

{tex}x=\pm \frac {1}{\sqrt 2}{/tex}

Henc the zeros f(x) are:

{tex} \alpha = \frac { 1 } { \sqrt { 2 } } \text { and } \beta = - \frac { 1 } { \sqrt { 2 } }{/tex}
Sum of the zeroes = {tex} \alpha + \beta = \frac { 1 } { \sqrt { 2 } } + \left( - \frac { 1 } { \sqrt { 2 } } \right) = 0{/tex} and, {tex} - \frac { \text { Coefficient of } x } { \text { Coefficient of } x ^ { 2 } } = - \frac { 0 } { 6 } = 0{/tex}
{tex}\therefore{/tex} Sum of the zeros {tex} = - \frac { \text { Coefficient of } x } { \text { coefficient of } x ^ { 2 } }{/tex}
Also, Product of the zeroes = {tex} \alpha \beta = \frac { 1 } { \sqrt { 2 } } \times \frac { - 1 } { \sqrt { 2 } } = \frac { - 1 } { 2 } {/tex}, and {tex} \frac { \text { Constant term } } { \text { Coefficient of } x ^ { 2 } }= \frac { - 3 } { 6 } = \frac { - 1 } { 2 }{/tex}
{tex}\therefore{/tex} Product of the zeros {tex}= \frac { \text { Constant term } } { \text { Coefficient of } x ^ { 2 } }{/tex}

https://examin8.com Test

Related Questions

sin60° cos 30°+ cos60° sin 30°
  • 2 answers
Find the nature of quadratic equation x^2 +x -5 =0
  • 0 answers
X-y=5
  • 1 answers
Venu Gopal has twice
  • 0 answers
(A + B )²
  • 1 answers
Prove that root 8 is an irration number
  • 2 answers

myCBSEguide App

myCBSEguide

Trusted by 1 Crore+ Students

Test Generator

Test Generator

Create papers online. It's FREE.

CUET Mock Tests

CUET Mock Tests

75,000+ questions to practice only on myCBSEguide app

Download myCBSEguide App