Zeros of quadratic polynomial f(x)=6x-3,verify relationship …

CBSE, JEE, NEET, CUET
Question Bank, Mock Tests, Exam Papers
NCERT Solutions, Sample Papers, Notes, Videos
Posted by Jayesh Wagh 6 years, 3 months ago
- 1 answers
Related Questions
Posted by Vanshika Bhatnagar 1 year, 4 months ago
- 2 answers
Posted by Hari Anand 6 months, 1 week ago
- 0 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 0 answers
Posted by Sahil Sahil 1 year, 4 months ago
- 2 answers
Posted by Parinith Gowda Ms 3 months, 2 weeks ago
- 1 answers
Posted by Kanika . 1 month ago
- 1 answers

myCBSEguide
Trusted by 1 Crore+ Students

Test Generator
Create papers online. It's FREE.

CUET Mock Tests
75,000+ questions to practice only on myCBSEguide app
myCBSEguide
Sia ? 6 years, 3 months ago
f(x)=6x2-3
To find zeros
6x2-3=0
6x2=3
{tex}x=\pm \frac {1}{\sqrt 2}{/tex}
Henc the zeros f(x) are:
{tex} \alpha = \frac { 1 } { \sqrt { 2 } } \text { and } \beta = - \frac { 1 } { \sqrt { 2 } }{/tex}
Sum of the zeroes = {tex} \alpha + \beta = \frac { 1 } { \sqrt { 2 } } + \left( - \frac { 1 } { \sqrt { 2 } } \right) = 0{/tex} and, {tex} - \frac { \text { Coefficient of } x } { \text { Coefficient of } x ^ { 2 } } = - \frac { 0 } { 6 } = 0{/tex}
{tex}\therefore{/tex} Sum of the zeros {tex} = - \frac { \text { Coefficient of } x } { \text { coefficient of } x ^ { 2 } }{/tex}
Also, Product of the zeroes = {tex} \alpha \beta = \frac { 1 } { \sqrt { 2 } } \times \frac { - 1 } { \sqrt { 2 } } = \frac { - 1 } { 2 } {/tex}, and {tex} \frac { \text { Constant term } } { \text { Coefficient of } x ^ { 2 } }= \frac { - 3 } { 6 } = \frac { - 1 } { 2 }{/tex}
{tex}\therefore{/tex} Product of the zeros {tex}= \frac { \text { Constant term } } { \text { Coefficient of } x ^ { 2 } }{/tex}
0Thank You